{"title":"Nynrin 通过抑制线粒体通透性转换孔的开放来保护造血干细胞的功能","authors":"Chengfang Zhou, Mei Kuang, Yin Tao, Jianming Wang, Yu Luo, Yinghao Fu, Zhe Chen, Yuanyuan Liu, Zhigang Li, Weiru Wu, Li Wang, Ying Dou, Junping Wang, Yu Hou","doi":"10.1016/j.stem.2024.06.007","DOIUrl":null,"url":null,"abstract":"<p>Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout <em>Nynrin</em> diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, <em>Nynrin</em> overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates <em>Ppif</em>, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as <em>Ppif</em> haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in <em>Nynrin</em>-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"337 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nynrin preserves hematopoietic stem cell function by inhibiting the mitochondrial permeability transition pore opening\",\"authors\":\"Chengfang Zhou, Mei Kuang, Yin Tao, Jianming Wang, Yu Luo, Yinghao Fu, Zhe Chen, Yuanyuan Liu, Zhigang Li, Weiru Wu, Li Wang, Ying Dou, Junping Wang, Yu Hou\",\"doi\":\"10.1016/j.stem.2024.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout <em>Nynrin</em> diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, <em>Nynrin</em> overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates <em>Ppif</em>, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as <em>Ppif</em> haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in <em>Nynrin</em>-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"337 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.06.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.06.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Nynrin preserves hematopoietic stem cell function by inhibiting the mitochondrial permeability transition pore opening
Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout Nynrin diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, Nynrin overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates Ppif, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as Ppif haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in Nynrin-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.