基于路易斯配对掺杂复合物的有机半导体通用高稳定掺杂系统

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-07-01 DOI:10.1021/acsenergylett.4c01278
Osnat Zapata-Arteaga, Aleksandr Perevedentsev, Michela Prete, Stephan Busato, Paolo Sebastiano Floris, Jesika Asatryan, Riccardo Rurali, Jaime Martín, Mariano Campoy-Quiles
{"title":"基于路易斯配对掺杂复合物的有机半导体通用高稳定掺杂系统","authors":"Osnat Zapata-Arteaga, Aleksandr Perevedentsev, Michela Prete, Stephan Busato, Paolo Sebastiano Floris, Jesika Asatryan, Riccardo Rurali, Jaime Martín, Mariano Campoy-Quiles","doi":"10.1021/acsenergylett.4c01278","DOIUrl":null,"url":null,"abstract":"Chemical doping of organic semiconductors is an essential enabler for applications in electronic and energy-conversion devices such as thermoelectrics. Here, Lewis-paired complexes are advanced as high-performance dopants that address all the principal drawbacks of conventional dopants in terms of limited electrical conductivity, thermal stability, and generality. The study focuses on the Lewis acid B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (BCF) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F<sub>4</sub>TCNQ) bearing Lewis-basic −CN groups. Due to its high electron affinity, BCF:F<sub>4</sub>TCNQ dopes an exceptionally wide range of organic semiconductors, over 20 of which are investigated. Complex activation and microstructure control lead to conductivities for poly(3-hexylthiophene) (P3HT) exceeding 300 and 900 S cm<sup>–1</sup> for isotropic and chain-oriented films, respectively, resulting in a 10 to 50 times larger thermoelectric power factor compared to those obtained with neat dopants. Moreover, BCF:F<sub>4</sub>TCNQ-doped P3HT exhibits a 3-fold higher thermal dedoping activation energy compared to that obtained with neat dopants and at least a factor of 10 better operational stability.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Universal, Highly Stable Dopant System for Organic Semiconductors Based on Lewis-Paired Dopant Complexes\",\"authors\":\"Osnat Zapata-Arteaga, Aleksandr Perevedentsev, Michela Prete, Stephan Busato, Paolo Sebastiano Floris, Jesika Asatryan, Riccardo Rurali, Jaime Martín, Mariano Campoy-Quiles\",\"doi\":\"10.1021/acsenergylett.4c01278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical doping of organic semiconductors is an essential enabler for applications in electronic and energy-conversion devices such as thermoelectrics. Here, Lewis-paired complexes are advanced as high-performance dopants that address all the principal drawbacks of conventional dopants in terms of limited electrical conductivity, thermal stability, and generality. The study focuses on the Lewis acid B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (BCF) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F<sub>4</sub>TCNQ) bearing Lewis-basic −CN groups. Due to its high electron affinity, BCF:F<sub>4</sub>TCNQ dopes an exceptionally wide range of organic semiconductors, over 20 of which are investigated. Complex activation and microstructure control lead to conductivities for poly(3-hexylthiophene) (P3HT) exceeding 300 and 900 S cm<sup>–1</sup> for isotropic and chain-oriented films, respectively, resulting in a 10 to 50 times larger thermoelectric power factor compared to those obtained with neat dopants. Moreover, BCF:F<sub>4</sub>TCNQ-doped P3HT exhibits a 3-fold higher thermal dedoping activation energy compared to that obtained with neat dopants and at least a factor of 10 better operational stability.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c01278\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01278","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机半导体的化学掺杂是电子和能量转换设备(如热电)应用的重要推动因素。路易斯配对复合物作为高性能掺杂剂,解决了传统掺杂剂在导电性、热稳定性和通用性方面的所有主要缺点。研究重点是路易斯酸 B(C6F5)3 (BCF) 和带有路易斯基本 -CN 基团的 2,3,5,6-四氟-7,7,8,8-四氰基二甲烷 (F4TCNQ)。由于 BCF:F4TCNQ 具有很高的电子亲和力,它可以掺杂多种有机半导体,目前已对其中 20 多种进行了研究。通过复杂的活化和微结构控制,聚(3-己基噻吩)(P3HT)各向同性薄膜和链向薄膜的电导率分别超过了 300 和 900 S cm-1,热电功率因数比使用纯掺杂剂时提高了 10 到 50 倍。此外,掺杂 BCF:F4TCNQ 的 P3HT 的热掺杂活化能是纯掺杂剂的 3 倍,工作稳定性至少提高了 10 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Universal, Highly Stable Dopant System for Organic Semiconductors Based on Lewis-Paired Dopant Complexes
Chemical doping of organic semiconductors is an essential enabler for applications in electronic and energy-conversion devices such as thermoelectrics. Here, Lewis-paired complexes are advanced as high-performance dopants that address all the principal drawbacks of conventional dopants in terms of limited electrical conductivity, thermal stability, and generality. The study focuses on the Lewis acid B(C6F5)3 (BCF) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) bearing Lewis-basic −CN groups. Due to its high electron affinity, BCF:F4TCNQ dopes an exceptionally wide range of organic semiconductors, over 20 of which are investigated. Complex activation and microstructure control lead to conductivities for poly(3-hexylthiophene) (P3HT) exceeding 300 and 900 S cm–1 for isotropic and chain-oriented films, respectively, resulting in a 10 to 50 times larger thermoelectric power factor compared to those obtained with neat dopants. Moreover, BCF:F4TCNQ-doped P3HT exhibits a 3-fold higher thermal dedoping activation energy compared to that obtained with neat dopants and at least a factor of 10 better operational stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Operando Pulse Electrochemical Mass Spectrometry for Nondestructive and Long-Term Gas Analysis in Practical Lithium-Ion Pouch Batteries A Universal, Highly Stable Dopant System for Organic Semiconductors Based on Lewis-Paired Dopant Complexes Understanding and Engineering the Perovskite/Organometallic Hole Transport Interface for High-Performance p–i–n Single Cells and Textured Tandem Solar Cells H-Transfer Mediated Self-Enhanced Interphase for High-Voltage Lithium-Ion Batteries Tailoring Primary Particle Size Distribution to Suppress Microcracks in Ni-Rich Cathodes via Controlled Grain Coarsening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1