利用天然核糖开关的结构元素设计 Branaplam Aptamers。

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2024-07-02 DOI:10.1021/acschembio.4c00358
Michael G Mohsen, Matthew K Midy, Aparaajita Balaji, Ronald R Breaker
{"title":"利用天然核糖开关的结构元素设计 Branaplam Aptamers。","authors":"Michael G Mohsen, Matthew K Midy, Aparaajita Balaji, Ronald R Breaker","doi":"10.1021/acschembio.4c00358","DOIUrl":null,"url":null,"abstract":"<p><p>Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches.\",\"authors\":\"Michael G Mohsen, Matthew K Midy, Aparaajita Balaji, Ronald R Breaker\",\"doi\":\"10.1021/acschembio.4c00358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00358\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00358","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

因疗效原因而在临床试验中失败的候选药物可能仍然具有良好的安全性和生物利用度特性,可以加以利用。如果能创造出一种能与化合物高度特异性结合的受体(如aptamer),那么失败的候选药物就能被重新利用。Branaplam 是一种小分子药物,以前曾用于治疗脊髓性肌萎缩症和亨廷顿氏症。在这里,我们报告了一种小的(48 个核苷酸)RNA 与 branaplam 的吻合器的开发情况,其解离常数为 ∼150 nM。从结合了鸟嘌呤-I核糖开关适配体的二级和三级结构支架以及随机序列区域的组合 RNA 池开始,体外筛选产生了 branaplam 的候选适配体。通过重新选择和合理设计,改进了具有代表性的 branaplam 候选灵敏配体的结合力。由此产生的一个变体保留了支架中的假结和两个成对元素(P2 和 P3),但缺少对天然 Guanine-I 核糖开关灵敏配体的功能至关重要的封闭成对元素(P1)。以 TPP(焦磷酸硫胺素)核糖开关支架为基础的第二个组合 RNA 池也产生了一个候选 RNA,为开发 branaplam aptamer 提供了更多机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches.

Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Confounding Factors in Targeted Degradation of Short-Lived Proteins. ALTering Cancer by Triggering Telomere Replication Stress through the Stabilization of Promoter G-Quadruplex in SMARCAL1. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. Tyrosine Sulfation Modulates the Binding Affinity of Chemokine-Targeting Nanobodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1