HCV 5-甲基胞嘧啶通过与 m5C 阅读器 YBX1 相互作用加强病毒 RNA 复制

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2024-07-02 DOI:10.1021/acschembio.4c00322
Zhu-Li Li, Yan Xie, Yuke Xie, Hongliang Chen, Xiang Zhou, Min Liu, Xiao-Lian Zhang
{"title":"HCV 5-甲基胞嘧啶通过与 m5C 阅读器 YBX1 相互作用加强病毒 RNA 复制","authors":"Zhu-Li Li, Yan Xie, Yuke Xie, Hongliang Chen, Xiang Zhou, Min Liu, Xiao-Lian Zhang","doi":"10.1021/acschembio.4c00322","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1.\",\"authors\":\"Zhu-Li Li, Yan Xie, Yuke Xie, Hongliang Chen, Xiang Zhou, Min Liu, Xiao-Lian Zhang\",\"doi\":\"10.1021/acschembio.4c00322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00322\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00322","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丙型肝炎病毒(HCV)是一种正链 RNA 病毒,主要导致慢性肝炎、肝硬化和肝细胞癌。最近,我们证实了 HCV RNA 基因组 NS5A 基因中的 m5C 修饰。然而,m5C 修饰及其与宿主蛋白的相互作用在调控 HCV 生命周期中的作用仍有待探索。在这里,我们证明了 HCV 感染会通过转录因子 MAX 增强宿主 m5C 阅读器 YBX1 的表达。YBX1 可作为 m5C 阅读器,识别 HCV RNA 基因组中经 m5C 修饰的 NS5A C7525 位点,并显著增强 HCV RNA 的稳定性。这种 m5C 修饰也是 YBX1 与脂滴和 HCV 核心蛋白共定位所必需的。此外,YBX1 还有助于 HCV RNA 复制以及病毒组装/萌发。YBX1 第 65 位(W65)的色氨酸残基对这些功能至关重要。敲除 YBX1 或使用 YBX1 抑制剂 SU056 可抑制 HCV RNA 复制和病毒蛋白翻译。据我们所知,这是第一份证明宿主 m5C 阅读器 YBX1 与 HCV RNA m5C 甲基化之间相互作用促进病毒复制的报告。因此,肝脏-YBX1 基因敲除有望成为一种潜在的宿主导向 HCV 治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1.

Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Confounding Factors in Targeted Degradation of Short-Lived Proteins. ALTering Cancer by Triggering Telomere Replication Stress through the Stabilization of Promoter G-Quadruplex in SMARCAL1. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. Tyrosine Sulfation Modulates the Binding Affinity of Chemokine-Targeting Nanobodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1