当电击脉冲作用于内侧前脑束和内侧前额叶皮层时,多巴胺在雅加布森核中的释放动态受电击脉冲时间的调节

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-07-03 DOI:10.1021/acschemneuro.4c00115
Andrea R Hamilton, Abhilasha Vishwanath, Nathan C Weintraub, Stephen L Cowen, M Leandro Heien
{"title":"当电击脉冲作用于内侧前脑束和内侧前额叶皮层时,多巴胺在雅加布森核中的释放动态受电击脉冲时间的调节","authors":"Andrea R Hamilton, Abhilasha Vishwanath, Nathan C Weintraub, Stephen L Cowen, M Leandro Heien","doi":"10.1021/acschemneuro.4c00115","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical brain stimulation has been used <i>in vivo</i> and <i>in vitro</i> to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex.\",\"authors\":\"Andrea R Hamilton, Abhilasha Vishwanath, Nathan C Weintraub, Stephen L Cowen, M Leandro Heien\",\"doi\":\"10.1021/acschemneuro.4c00115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical brain stimulation has been used <i>in vivo</i> and <i>in vitro</i> to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00115\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑电刺激已被用于体内和体外研究神经回路。一直以来,人们通过改变振幅、频率和脉宽等刺激参数来研究它们对神经递质释放和行为的影响。这些实验传统上采用固定频率的刺激模式,但以前曾发现神经元对可变输入的调谐更为精确。在刺激脉冲的脉冲间隔中引入可变性将有助于了解脉冲时间的可变性如何调节多巴胺能的释放。在这里,我们通过快速扫描环形伏安法监测了大鼠的多巴胺能释放情况,多巴胺能中枢是一个关键的多巴胺能中枢,在学习和动机中发挥作用。由于连通性的差异,NAc 中多巴胺能的释放也可能受刺激区域的调节。我们针对内侧前脑束(MFB)和内侧前额叶皮层(mPFC)这两个区域进行刺激,因为它们参与奖赏处理并向NAc投射。我们的目标是研究对这些区域施加不同脉冲间歇刺激模式会如何影响 NAc 中多巴胺释放的时间过程。我们发现,用这些可变刺激模式刺激中枢脑桥时,会出现高度敏感的频率驱动型多巴胺能反应。与此相反,应用于 mPFC 的可变刺激模式对可变频率变化并不那么敏感。这项研究将有助于了解如何针对刺激区域调整刺激模式,以提高电刺激的效率并控制多巴胺的释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex.

Electrical brain stimulation has been used in vivo and in vitro to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
MiR-23b-3p Improves Brain Damage after Status Epilepticus by Reducing the Formation of Pathological High-Frequency Oscillations via Inhibition of cx43 in Rat Hippocampus. Issue Editorial Masthead Issue Publication Information A Snake Venom Peptide and Its Derivatives Prevent Aβ42 Aggregation and Eliminate Toxic Aβ42 Aggregates In Vitro. Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1