{"title":"ACSL3 通过脂质代谢重编程和 YES1/YAP 轴调控乳腺癌的进展。","authors":"Shirong Tan, Xiangyu Sun, Haoran Dong, Mozhi Wang, Litong Yao, Mengshen Wang, Ling Xu, Yingying Xu","doi":"10.20892/j.issn.2095-3941.2023.0309","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined.</p><p><strong>Methods: </strong>We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 <i>in vitro</i> and <i>in vivo</i>.</p><p><strong>Results: </strong>ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit β-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei.</p><p><strong>Conclusions: </strong>ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.</p>","PeriodicalId":9611,"journal":{"name":"Cancer Biology & Medicine","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271223/pdf/","citationCount":"0","resultStr":"{\"title\":\"ACSL3 regulates breast cancer progression <i>via</i> lipid metabolism reprogramming and the YES1/YAP axis.\",\"authors\":\"Shirong Tan, Xiangyu Sun, Haoran Dong, Mozhi Wang, Litong Yao, Mengshen Wang, Ling Xu, Yingying Xu\",\"doi\":\"10.20892/j.issn.2095-3941.2023.0309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined.</p><p><strong>Methods: </strong>We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 <i>in vitro</i> and <i>in vivo</i>.</p><p><strong>Results: </strong>ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit β-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei.</p><p><strong>Conclusions: </strong>ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.</p>\",\"PeriodicalId\":9611,\"journal\":{\"name\":\"Cancer Biology & Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.20892/j.issn.2095-3941.2023.0309\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20892/j.issn.2095-3941.2023.0309","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
ACSL3 regulates breast cancer progression via lipid metabolism reprogramming and the YES1/YAP axis.
Objective: Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined.
Methods: We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo.
Results: ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit β-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei.
Conclusions: ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.
期刊介绍:
Cancer Biology & Medicine (ISSN 2095-3941) is a peer-reviewed open-access journal of Chinese Anti-cancer Association (CACA), which is the leading professional society of oncology in China. The journal quarterly provides innovative and significant information on biological basis of cancer, cancer microenvironment, translational cancer research, and all aspects of clinical cancer research. The journal also publishes significant perspectives on indigenous cancer types in China.