用于诊断帕金森病的靶向多巴胺转运体的放射性示踪剂[18F]FP-CIT的临床前评估:药代动力学和疗效分析。

IF 3.1 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Research Pub Date : 2024-07-03 DOI:10.1186/s13550-024-01121-6
Jae Hun Ahn, Min Hwan Kim, Kyongkyu Lee, Keumrok Oh, Hyunwoo Lim, Hee Seup Kil, Soon Jeong Kwon, Jae Yong Choi, Dae Yoon Chi, Yong Jin Lee
{"title":"用于诊断帕金森病的靶向多巴胺转运体的放射性示踪剂[18F]FP-CIT的临床前评估:药代动力学和疗效分析。","authors":"Jae Hun Ahn, Min Hwan Kim, Kyongkyu Lee, Keumrok Oh, Hyunwoo Lim, Hee Seup Kil, Soon Jeong Kwon, Jae Yong Choi, Dae Yoon Chi, Yong Jin Lee","doi":"10.1186/s13550-024-01121-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane (FP-CIT), the representative cocaine derivative used in dopamine transporter imaging, is a promising biomarker, as it reflects the severity of Parkinson's disease (PD). <sup>123</sup>I- and <sup>18</sup>F-labeled FP-CIT has been used for PD diagnosis. However, preclinical studies evaluating [<sup>18</sup>F]FP-CIT as a potential diagnostic biomarker are scarce. Among translational research advancements from bench to bedside, translating preclinical findings into clinical practice is one-directional. The aim of this study is to employ a circular approach, beginning back from the preclinical stage, progressing to the supplementation of [<sup>18</sup>F]FP-CIT, and subsequently returning to clinical application. We investigated the pharmacokinetic properties of [<sup>18</sup>F]FP-CIT and its efficacy for PD diagnosis using murine models.</p><p><strong>Results: </strong>Biodistribution, metabolite and excretion analyses were performed in mice and PD models were induced in rats using 6-hydroxydopamine (6-OHDA). The targeting efficiency of [<sup>18</sup>F]FP-CIT for the dopamine receptor was assessed through animal PET/CT imaging. Subsequently, correlation analysis was conducted between animal PET/CT imaging results and immunohistochemistry (IHC) targeting tyrosine hydroxylase. Rapid circulation was confirmed after [<sup>18</sup>F]FP-CIT injection. [<sup>18</sup>F]FP-CIT reached the highest uptake of 23.50 ± 12.46%ID/g in the striatum 1 min after injection, and it was rapidly excreted within 60 min. The major metabolic organs of [<sup>18</sup>F]FP-CIT were confirmed to be the intestines, liver, and kidneys. Its uptake in the intestine was approximately 5% ID/g. The uptake in the liver gradually increased, with excretion beginning after reaching a maximum after 60 min. The kidneys exhibited rapid elimination after 10 min. In the excretion study, rapid elimination was verified, with 21.46 ± 9.53% of the compound excreted within a 6 h period. Additionally, the efficacy of [<sup>18</sup>F]FP-CIT PET was demonstrated in the PD model, with a high correlation with IHC for both the absolute value (R = 0.803, p = 0.0017) and the ratio value (R = 0.973, p = 0.0011).</p><p><strong>Conclusions: </strong>This study fills the gap regarding insufficient preclinical studies on [<sup>18</sup>F]FP-CIT, including its ADME, metabolites, and efficiency. The pharmacological results, including accurate diagnosis, rapid circulation, and [<sup>18</sup>F]FP-CIT excretion, provide complementary evidence that [<sup>18</sup>F]FP-CIT can be used safely and efficiently to diagnose PD in clinics, although it is already used in clinics.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preclinical evaluation of [<sup>18</sup>F]FP-CIT, the radiotracer targeting dopamine transporter for diagnosing Parkinson's disease: pharmacokinetic and efficacy analysis.\",\"authors\":\"Jae Hun Ahn, Min Hwan Kim, Kyongkyu Lee, Keumrok Oh, Hyunwoo Lim, Hee Seup Kil, Soon Jeong Kwon, Jae Yong Choi, Dae Yoon Chi, Yong Jin Lee\",\"doi\":\"10.1186/s13550-024-01121-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane (FP-CIT), the representative cocaine derivative used in dopamine transporter imaging, is a promising biomarker, as it reflects the severity of Parkinson's disease (PD). <sup>123</sup>I- and <sup>18</sup>F-labeled FP-CIT has been used for PD diagnosis. However, preclinical studies evaluating [<sup>18</sup>F]FP-CIT as a potential diagnostic biomarker are scarce. Among translational research advancements from bench to bedside, translating preclinical findings into clinical practice is one-directional. The aim of this study is to employ a circular approach, beginning back from the preclinical stage, progressing to the supplementation of [<sup>18</sup>F]FP-CIT, and subsequently returning to clinical application. We investigated the pharmacokinetic properties of [<sup>18</sup>F]FP-CIT and its efficacy for PD diagnosis using murine models.</p><p><strong>Results: </strong>Biodistribution, metabolite and excretion analyses were performed in mice and PD models were induced in rats using 6-hydroxydopamine (6-OHDA). The targeting efficiency of [<sup>18</sup>F]FP-CIT for the dopamine receptor was assessed through animal PET/CT imaging. Subsequently, correlation analysis was conducted between animal PET/CT imaging results and immunohistochemistry (IHC) targeting tyrosine hydroxylase. Rapid circulation was confirmed after [<sup>18</sup>F]FP-CIT injection. [<sup>18</sup>F]FP-CIT reached the highest uptake of 23.50 ± 12.46%ID/g in the striatum 1 min after injection, and it was rapidly excreted within 60 min. The major metabolic organs of [<sup>18</sup>F]FP-CIT were confirmed to be the intestines, liver, and kidneys. Its uptake in the intestine was approximately 5% ID/g. The uptake in the liver gradually increased, with excretion beginning after reaching a maximum after 60 min. The kidneys exhibited rapid elimination after 10 min. In the excretion study, rapid elimination was verified, with 21.46 ± 9.53% of the compound excreted within a 6 h period. Additionally, the efficacy of [<sup>18</sup>F]FP-CIT PET was demonstrated in the PD model, with a high correlation with IHC for both the absolute value (R = 0.803, p = 0.0017) and the ratio value (R = 0.973, p = 0.0011).</p><p><strong>Conclusions: </strong>This study fills the gap regarding insufficient preclinical studies on [<sup>18</sup>F]FP-CIT, including its ADME, metabolites, and efficiency. The pharmacological results, including accurate diagnosis, rapid circulation, and [<sup>18</sup>F]FP-CIT excretion, provide complementary evidence that [<sup>18</sup>F]FP-CIT can be used safely and efficiently to diagnose PD in clinics, although it is already used in clinics.</p>\",\"PeriodicalId\":11611,\"journal\":{\"name\":\"EJNMMI Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13550-024-01121-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01121-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:N-(3-氟丙基)-2β-羧基甲氧基-3β-(4-碘苯基)正丙烷(FP-CIT)是用于多巴胺转运体成像的代表性可卡因衍生物,是一种很有前景的生物标记物,因为它能反映帕金森病(PD)的严重程度。然而,评估[18F]FP-CIT 作为潜在诊断生物标记物的临床前研究还很少。在从台前到床边的转化研究进展中,将临床前研究结果转化为临床实践是单向的。本研究的目的是采用一种循环方法,从临床前阶段开始,到补充[18F]FP-CIT,再回到临床应用。我们利用小鼠模型研究了[18F]FP-CIT的药代动力学特性及其对诊断帕金森病的疗效:结果:我们在小鼠体内进行了生物分布、代谢物和排泄物分析,并用6-羟基多巴胺(6-OHDA)诱导大鼠建立了帕金森病模型。通过动物 PET/CT 成像评估了[18F]FP-CIT 对多巴胺受体的靶向效率。随后,对动物 PET/CT 成像结果和针对酪氨酸羟化酶的免疫组织化学(IHC)结果进行了相关性分析。[18F]FP-CIT注射后的快速循环得到了证实。注射[18F]FP-CIT后1分钟,纹状体对[18F]FP-CIT的吸收率最高,达到23.50 ± 12.46%ID/g ,并在60分钟内迅速排出体外。经证实,[18F]FP-CIT 的主要代谢器官是肠道、肝脏和肾脏。它在肠道中的吸收率约为 5%ID/g。肝脏的摄取量逐渐增加,在 60 分钟后达到最大值并开始排泄。肾脏在 10 分钟后迅速排出。在排泄研究中,验证了快速排泄,6 小时内排泄了 21.46 ± 9.53% 的化合物。此外,[18F]FP-CIT PET 在帕金森病模型中的疗效也得到了证实,其绝对值(R = 0.803,p = 0.0017)和比值(R = 0.973,p = 0.0011)与 IHC 具有高度相关性:本研究填补了[18F]FP-CIT临床前研究不足的空白,包括其ADME、代谢物和效率。尽管[18F]FP-CIT已在临床中使用,但其准确诊断、快速循环和[18F]FP-CIT排泄等药理学结果为[18F]FP-CIT可安全、高效地用于临床诊断帕金森病提供了补充证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preclinical evaluation of [18F]FP-CIT, the radiotracer targeting dopamine transporter for diagnosing Parkinson's disease: pharmacokinetic and efficacy analysis.

Background: N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane (FP-CIT), the representative cocaine derivative used in dopamine transporter imaging, is a promising biomarker, as it reflects the severity of Parkinson's disease (PD). 123I- and 18F-labeled FP-CIT has been used for PD diagnosis. However, preclinical studies evaluating [18F]FP-CIT as a potential diagnostic biomarker are scarce. Among translational research advancements from bench to bedside, translating preclinical findings into clinical practice is one-directional. The aim of this study is to employ a circular approach, beginning back from the preclinical stage, progressing to the supplementation of [18F]FP-CIT, and subsequently returning to clinical application. We investigated the pharmacokinetic properties of [18F]FP-CIT and its efficacy for PD diagnosis using murine models.

Results: Biodistribution, metabolite and excretion analyses were performed in mice and PD models were induced in rats using 6-hydroxydopamine (6-OHDA). The targeting efficiency of [18F]FP-CIT for the dopamine receptor was assessed through animal PET/CT imaging. Subsequently, correlation analysis was conducted between animal PET/CT imaging results and immunohistochemistry (IHC) targeting tyrosine hydroxylase. Rapid circulation was confirmed after [18F]FP-CIT injection. [18F]FP-CIT reached the highest uptake of 23.50 ± 12.46%ID/g in the striatum 1 min after injection, and it was rapidly excreted within 60 min. The major metabolic organs of [18F]FP-CIT were confirmed to be the intestines, liver, and kidneys. Its uptake in the intestine was approximately 5% ID/g. The uptake in the liver gradually increased, with excretion beginning after reaching a maximum after 60 min. The kidneys exhibited rapid elimination after 10 min. In the excretion study, rapid elimination was verified, with 21.46 ± 9.53% of the compound excreted within a 6 h period. Additionally, the efficacy of [18F]FP-CIT PET was demonstrated in the PD model, with a high correlation with IHC for both the absolute value (R = 0.803, p = 0.0017) and the ratio value (R = 0.973, p = 0.0011).

Conclusions: This study fills the gap regarding insufficient preclinical studies on [18F]FP-CIT, including its ADME, metabolites, and efficiency. The pharmacological results, including accurate diagnosis, rapid circulation, and [18F]FP-CIT excretion, provide complementary evidence that [18F]FP-CIT can be used safely and efficiently to diagnose PD in clinics, although it is already used in clinics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Research
EJNMMI Research RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍: EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies. The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.
期刊最新文献
Biomarkers of bone metabolism in [223Ra] RaCl2 therapy - association with extent of disease and prediction of overall survival. Diagnostic and evaluative efficiency of 68Ga-FAPI-04 in skeletal muscle injury. Physiological provocation compared to acetazolamide in the assessment of cerebral hemodynamics: a case report. Preclinical evaluation and first-in-human study of [18F]AlF-FAP-NUR for PET imaging cancer-associated fibroblasts. An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1