人工智能在脊柱成像和患者护理中的应用:最新进展回顾。

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY Neurospine Pub Date : 2024-06-01 Epub Date: 2024-06-30 DOI:10.14245/ns.2448388.194
Sungwon Lee, Joon-Yong Jung, Akaworn Mahatthanatrakul, Jin-Sung Kim
{"title":"人工智能在脊柱成像和患者护理中的应用:最新进展回顾。","authors":"Sungwon Lee, Joon-Yong Jung, Akaworn Mahatthanatrakul, Jin-Sung Kim","doi":"10.14245/ns.2448388.194","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.</p>","PeriodicalId":19269,"journal":{"name":"Neurospine","volume":"21 2","pages":"474-486"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances.\",\"authors\":\"Sungwon Lee, Joon-Yong Jung, Akaworn Mahatthanatrakul, Jin-Sung Kim\",\"doi\":\"10.14245/ns.2448388.194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.</p>\",\"PeriodicalId\":19269,\"journal\":{\"name\":\"Neurospine\",\"volume\":\"21 2\",\"pages\":\"474-486\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurospine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14245/ns.2448388.194\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurospine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14245/ns.2448388.194","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)通过自动分析和强化决策,正在改变脊柱成像和患者护理。本综述以临床任务为基础进行评估,突出人工智能技术对脊柱成像和患者护理不同方面的具体影响。我们首先讨论人工智能如何通过去噪或减少伪影等技术提高图像质量。然后,我们探讨人工智能如何实现解剖测量、脊柱曲率参数、椎体分割和椎间盘分级的高效量化。这有助于进行客观、准确的解释和诊断。现在,人工智能模型能可靠地检测出关键的脊柱病变,在识别骨折、狭窄、感染和肿瘤等任务中达到专家级水平。除诊断外,人工智能还可通过合成计算机断层扫描生成、增强现实系统和机器人引导来协助手术规划。此外,人工智能图像分析与临床数据相结合,可进行个性化预测,指导治疗决策,如预测脊柱手术的结果。然而,在临床应用人工智能时仍需应对各种挑战,包括模型的可解释性、可推广性和数据局限性。使用大型、多样化数据集的多中心合作对于进一步推动该领域的发展至关重要。虽然采用障碍依然存在,但人工智能为脊柱成像工作流程带来了变革性机遇,使临床医生有能力将数据转化为可操作的见解,从而改善患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances.

Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurospine
Neurospine Multiple-
CiteScore
5.80
自引率
18.80%
发文量
93
审稿时长
10 weeks
期刊最新文献
A Self-Developed Mobility Augmented Reality System Versus Conventional X-rays for Spine Positioning in Intraspinal Tumor Surgery: A Case-Control Study. An Experimental Model for Fluid Dynamics and Pressures During Endoscopic Lumbar Discectomy. Application of the "Klotski Technique" in Cervical Ossification of the Posterior Longitudinal Ligament With En Bloc Type Dura Ossification. Artificial Intelligence Detection of Cervical Spine Fractures Using Convolutional Neural Network Models. Biomechanical Study of Atlanto-occipital Instability in Type II Basilar Invagination: A Finite Element Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1