{"title":"电子-声子耦合的定量调节。","authors":"Shenghai Pei, Zejuan Zhang, Chenyin Jiao, Zhenyu Wang, Jian Lv, Yujun Zhang, Mingyuan Huang, Yanchao Wang, Zenghui Wang, Juan Xia","doi":"10.1088/1361-6633/ad4fbd","DOIUrl":null,"url":null,"abstract":"<p><p>Electron-phonon (e-p) coupling plays a crucial role in various physical phenomena, and regulation of e-p coupling is vital for the exploration and design of high-performance materials. However, the current research on this topic lacks accurate quantification, hindering further understanding of the underlying physical processes and its applications. In this work, we demonstrate quantitative regulation of e-p coupling, by pressure engineering and<i>in-situ</i>spectroscopy. We successfully observe both a distinct vibrational mode and a strong Stokes shift in layered CrBr<sub>3</sub>, which are clear signatures of e-p coupling. This allows us to achieve precise quantification of the Huang-Rhys factor<i>S</i>at the actual sample temperature, thus accurately determining the e-p coupling strength. We further reveal that pressure efficiently regulates the e-p coupling in CrBr<sub>3</sub>, evidenced by a remarkable 40% increase in<i>S</i>value. Our results offer an approach for quantifying and modulating e-p coupling, which can be leveraged for exploring and designing functional materials with targeted e-p coupling strengths.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":"87 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative regulation of electron-phonon coupling.\",\"authors\":\"Shenghai Pei, Zejuan Zhang, Chenyin Jiao, Zhenyu Wang, Jian Lv, Yujun Zhang, Mingyuan Huang, Yanchao Wang, Zenghui Wang, Juan Xia\",\"doi\":\"10.1088/1361-6633/ad4fbd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron-phonon (e-p) coupling plays a crucial role in various physical phenomena, and regulation of e-p coupling is vital for the exploration and design of high-performance materials. However, the current research on this topic lacks accurate quantification, hindering further understanding of the underlying physical processes and its applications. In this work, we demonstrate quantitative regulation of e-p coupling, by pressure engineering and<i>in-situ</i>spectroscopy. We successfully observe both a distinct vibrational mode and a strong Stokes shift in layered CrBr<sub>3</sub>, which are clear signatures of e-p coupling. This allows us to achieve precise quantification of the Huang-Rhys factor<i>S</i>at the actual sample temperature, thus accurately determining the e-p coupling strength. We further reveal that pressure efficiently regulates the e-p coupling in CrBr<sub>3</sub>, evidenced by a remarkable 40% increase in<i>S</i>value. Our results offer an approach for quantifying and modulating e-p coupling, which can be leveraged for exploring and designing functional materials with targeted e-p coupling strengths.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\"87 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ad4fbd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad4fbd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative regulation of electron-phonon coupling.
Electron-phonon (e-p) coupling plays a crucial role in various physical phenomena, and regulation of e-p coupling is vital for the exploration and design of high-performance materials. However, the current research on this topic lacks accurate quantification, hindering further understanding of the underlying physical processes and its applications. In this work, we demonstrate quantitative regulation of e-p coupling, by pressure engineering andin-situspectroscopy. We successfully observe both a distinct vibrational mode and a strong Stokes shift in layered CrBr3, which are clear signatures of e-p coupling. This allows us to achieve precise quantification of the Huang-Rhys factorSat the actual sample temperature, thus accurately determining the e-p coupling strength. We further reveal that pressure efficiently regulates the e-p coupling in CrBr3, evidenced by a remarkable 40% increase inSvalue. Our results offer an approach for quantifying and modulating e-p coupling, which can be leveraged for exploring and designing functional materials with targeted e-p coupling strengths.