开发可应用于对称氧化还原流电池的模块化镍renium 双极电解质。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-07-04 DOI:10.1021/jacs.4c05799
Andrii Varenikov, Mark Gandelman and Matthew S. Sigman*, 
{"title":"开发可应用于对称氧化还原流电池的模块化镍renium 双极电解质。","authors":"Andrii Varenikov,&nbsp;Mark Gandelman and Matthew S. Sigman*,&nbsp;","doi":"10.1021/jacs.4c05799","DOIUrl":null,"url":null,"abstract":"<p >Amid the escalating integration of renewable energy sources, the demand for grid energy storage solutions, including non-aqueous organic redox flow batteries (oRFBs), has become ever more pronounced. oRFBs face a primary challenge of irreversible capacity loss attributed to the crossover of redox-active materials between half-cells. A possible solution for the crossover challenge involves utilization of bipolar electrolytes that act as both the catholyte and anolyte. Identifying such molecules poses several challenges as it requires a delicate balance between the stability of both oxidation states and energy density, which is influenced by the separation between the two redox events. We report the development of a diaminotriazolium redox-active core capable of producing two electronically distinct persistent radical species with typically extreme reduction potentials (<i>E</i><sub>1/2</sub><sup>red</sup> &lt; −2 V, <i>E</i><sub>1/2</sub><sup>ox</sup> &gt; +1 V, vs Fc<sup>0/+</sup>) and up to 3.55 V separation between the two redox events. Structure–property optimization studies allowed us to identify factors responsible for fine-tuning of potentials for both redox events, as well as separation between them. Mechanistic studies revealed two primary decomposition pathways for the neutral radical charged species and one for the radical biscation. Additionally, statistical modeling provided evidence for the molecular descriptors to allow identification of the structural features responsible for stability of radical species and to propose more stable analogues.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries\",\"authors\":\"Andrii Varenikov,&nbsp;Mark Gandelman and Matthew S. Sigman*,&nbsp;\",\"doi\":\"10.1021/jacs.4c05799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Amid the escalating integration of renewable energy sources, the demand for grid energy storage solutions, including non-aqueous organic redox flow batteries (oRFBs), has become ever more pronounced. oRFBs face a primary challenge of irreversible capacity loss attributed to the crossover of redox-active materials between half-cells. A possible solution for the crossover challenge involves utilization of bipolar electrolytes that act as both the catholyte and anolyte. Identifying such molecules poses several challenges as it requires a delicate balance between the stability of both oxidation states and energy density, which is influenced by the separation between the two redox events. We report the development of a diaminotriazolium redox-active core capable of producing two electronically distinct persistent radical species with typically extreme reduction potentials (<i>E</i><sub>1/2</sub><sup>red</sup> &lt; −2 V, <i>E</i><sub>1/2</sub><sup>ox</sup> &gt; +1 V, vs Fc<sup>0/+</sup>) and up to 3.55 V separation between the two redox events. Structure–property optimization studies allowed us to identify factors responsible for fine-tuning of potentials for both redox events, as well as separation between them. Mechanistic studies revealed two primary decomposition pathways for the neutral radical charged species and one for the radical biscation. Additionally, statistical modeling provided evidence for the molecular descriptors to allow identification of the structural features responsible for stability of radical species and to propose more stable analogues.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c05799\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c05799","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着可再生能源的不断整合,对电网储能解决方案(包括非水有机氧化还原液流电池(oRFB))的需求也变得越来越明显。oRFB 面临的主要挑战是由于半电池之间氧化还原活性材料的交叉而造成的不可逆容量损失。解决交叉问题的一种可能办法是利用既是阴极电解质又是阳极电解质的双极电解质。识别这类分子需要在两种氧化态的稳定性和能量密度之间取得微妙的平衡,而能量密度又受两个氧化还原事件之间的间隔影响,因此带来了诸多挑战。我们报告了一种二氨基三唑鎓氧化还原活性内核的开发情况,这种内核能够产生两种电子上截然不同的持久自由基物种,具有典型的极端还原电位(E1/2red < -2 V,E1/2ox > +1 V,vs Fc0/+),两种氧化还原事件之间的间隔高达 3.55 V。通过结构-性能优化研究,我们确定了导致两种氧化还原反应电位微调以及它们之间分离的因素。机理研究揭示了中性自由基带电物种的两种主要分解途径和自由基双歧化的一种主要分解途径。此外,统计建模为分子描述符提供了证据,从而可以确定导致自由基物种稳定的结构特征,并提出更稳定的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries

Amid the escalating integration of renewable energy sources, the demand for grid energy storage solutions, including non-aqueous organic redox flow batteries (oRFBs), has become ever more pronounced. oRFBs face a primary challenge of irreversible capacity loss attributed to the crossover of redox-active materials between half-cells. A possible solution for the crossover challenge involves utilization of bipolar electrolytes that act as both the catholyte and anolyte. Identifying such molecules poses several challenges as it requires a delicate balance between the stability of both oxidation states and energy density, which is influenced by the separation between the two redox events. We report the development of a diaminotriazolium redox-active core capable of producing two electronically distinct persistent radical species with typically extreme reduction potentials (E1/2red < −2 V, E1/2ox > +1 V, vs Fc0/+) and up to 3.55 V separation between the two redox events. Structure–property optimization studies allowed us to identify factors responsible for fine-tuning of potentials for both redox events, as well as separation between them. Mechanistic studies revealed two primary decomposition pathways for the neutral radical charged species and one for the radical biscation. Additionally, statistical modeling provided evidence for the molecular descriptors to allow identification of the structural features responsible for stability of radical species and to propose more stable analogues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
A Radical Strategy for the Alkylation of Amides with Alkyl Halides by Merging Boryl Radical-Mediated Halogen-Atom Transfer and Copper Catalysis. Allosteric Control of the Catalytic Properties of Dipeptide-Based Supramolecular Assemblies. Aptamer-Based Enforced Phosphatase-Recruiting Chimeras Inhibit Receptor Tyrosine Kinase Signal Transduction. Carbon-Spaced Tandem-Disulfide Bond Bridge Design Addresses Limitations of Homodimer Prodrug Nanoassemblies: Enhancing Both Stability and Activatability. Correction to "Probing Ion-Receptor Interactions in Halide Complexes of Octamethyl Calix[4]Pyrrole".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1