Patrick M. Plehiers, Hans-Georg Pirkl, Lauren Ward and Christian Bögi
{"title":"区分芳香族二异氰酸酯在水中的异质和均质条件的标准。","authors":"Patrick M. Plehiers, Hans-Georg Pirkl, Lauren Ward and Christian Bögi","doi":"10.1039/D4EM00200H","DOIUrl":null,"url":null,"abstract":"<p >Environmental fate and toxicity testing typically requires knowledge of the water solubility of the test substances. Determining the solubility of aromatic diisocyanates in water poses great challenges because of their hydrophobic nature and water-reactivity. The reactive dissolution process is dynamic and the establishment of a steady-state equilibrium cannot readily be observed. In preparation of experimental work, computer simulation was used to derive and evaluate criteria that enable distinguishing homogeneous (<em>i.e.</em>, substances would be fully dissolved in water) from heterogeneous (<em>i.e.</em>, a separate organic phase would be present) conditions. The simulation utilized available kinetic information and models representing the main physical and chemical processes taking place. It was found that the transition to heterogeneous conditions (<em>i.e.</em>, the exceedance of the solubility limit with increasing loading) can be identified by observing either a rapid decline in ultimate yield of the diamine hydrolysis product from near-stoichiometric to much lower values, or a decrease in rate of formation of the diamine hydrolysis product relative to its ultimate yield. The latter criterion is expected to be the more powerful indicator. These criteria can be used in future work to define and interpret an experimental program for determining solubility limits for aromatic diisocyanates or other poorly-soluble, water-reactive substances.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 8","pages":" 1373-1379"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criteria for distinguishing heterogeneous from homogeneous conditions for aromatic diisocyanates in water†\",\"authors\":\"Patrick M. Plehiers, Hans-Georg Pirkl, Lauren Ward and Christian Bögi\",\"doi\":\"10.1039/D4EM00200H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Environmental fate and toxicity testing typically requires knowledge of the water solubility of the test substances. Determining the solubility of aromatic diisocyanates in water poses great challenges because of their hydrophobic nature and water-reactivity. The reactive dissolution process is dynamic and the establishment of a steady-state equilibrium cannot readily be observed. In preparation of experimental work, computer simulation was used to derive and evaluate criteria that enable distinguishing homogeneous (<em>i.e.</em>, substances would be fully dissolved in water) from heterogeneous (<em>i.e.</em>, a separate organic phase would be present) conditions. The simulation utilized available kinetic information and models representing the main physical and chemical processes taking place. It was found that the transition to heterogeneous conditions (<em>i.e.</em>, the exceedance of the solubility limit with increasing loading) can be identified by observing either a rapid decline in ultimate yield of the diamine hydrolysis product from near-stoichiometric to much lower values, or a decrease in rate of formation of the diamine hydrolysis product relative to its ultimate yield. The latter criterion is expected to be the more powerful indicator. These criteria can be used in future work to define and interpret an experimental program for determining solubility limits for aromatic diisocyanates or other poorly-soluble, water-reactive substances.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 8\",\"pages\":\" 1373-1379\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00200h\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00200h","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Criteria for distinguishing heterogeneous from homogeneous conditions for aromatic diisocyanates in water†
Environmental fate and toxicity testing typically requires knowledge of the water solubility of the test substances. Determining the solubility of aromatic diisocyanates in water poses great challenges because of their hydrophobic nature and water-reactivity. The reactive dissolution process is dynamic and the establishment of a steady-state equilibrium cannot readily be observed. In preparation of experimental work, computer simulation was used to derive and evaluate criteria that enable distinguishing homogeneous (i.e., substances would be fully dissolved in water) from heterogeneous (i.e., a separate organic phase would be present) conditions. The simulation utilized available kinetic information and models representing the main physical and chemical processes taking place. It was found that the transition to heterogeneous conditions (i.e., the exceedance of the solubility limit with increasing loading) can be identified by observing either a rapid decline in ultimate yield of the diamine hydrolysis product from near-stoichiometric to much lower values, or a decrease in rate of formation of the diamine hydrolysis product relative to its ultimate yield. The latter criterion is expected to be the more powerful indicator. These criteria can be used in future work to define and interpret an experimental program for determining solubility limits for aromatic diisocyanates or other poorly-soluble, water-reactive substances.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.