{"title":"通过非蒽醌探索发现作为黄嘌呤氧化酶抑制剂的 4-(异戊氧基)-3-硝基苯甲酰胺衍生物。","authors":"Shuai Guo, Qi Sun, Xu Zhang, Song-ye Li, Hong-ye Liu, Gong-hui Ge, Jing Wang, Xing-yang Liu, Ben Xu, Ting-ting Li, Xian-feng Zhou, Yan-ping Wang, Fan-hao Meng, Ting-jian Zhang","doi":"10.1002/ardp.202400137","DOIUrl":null,"url":null,"abstract":"<p>In our previous study, we reported a series of <i>N</i>-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure–activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-<i>N</i>-(1<i>H</i>-pyrazol-3-yl)-3-nitrobenzamide (<b>6k</b>), demonstrated exceptional in vitro potency with an IC<sub>50</sub> value of 0.13 μM. Compound <b>6k</b> showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound <b>1d</b>, <b>6k</b> exhibited a substantial 24-fold improvement in IC<sub>50</sub>, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of <b>6k</b> with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that <b>6k</b> significantly reduced serum uric acid levels in rats. The MTT results revealed that compound <b>6k</b> is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound <b>6k</b> exhibits good stability in the gastric and intestinal environments. In conclusion, compound <b>6k</b> emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of 4-(isopentyloxy)-3-nitrobenzamide derivatives as xanthine oxidase inhibitors through a non-anthraquinone exploration\",\"authors\":\"Shuai Guo, Qi Sun, Xu Zhang, Song-ye Li, Hong-ye Liu, Gong-hui Ge, Jing Wang, Xing-yang Liu, Ben Xu, Ting-ting Li, Xian-feng Zhou, Yan-ping Wang, Fan-hao Meng, Ting-jian Zhang\",\"doi\":\"10.1002/ardp.202400137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In our previous study, we reported a series of <i>N</i>-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure–activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-<i>N</i>-(1<i>H</i>-pyrazol-3-yl)-3-nitrobenzamide (<b>6k</b>), demonstrated exceptional in vitro potency with an IC<sub>50</sub> value of 0.13 μM. Compound <b>6k</b> showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound <b>1d</b>, <b>6k</b> exhibited a substantial 24-fold improvement in IC<sub>50</sub>, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of <b>6k</b> with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that <b>6k</b> significantly reduced serum uric acid levels in rats. The MTT results revealed that compound <b>6k</b> is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound <b>6k</b> exhibits good stability in the gastric and intestinal environments. In conclusion, compound <b>6k</b> emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"357 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400137\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400137","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of 4-(isopentyloxy)-3-nitrobenzamide derivatives as xanthine oxidase inhibitors through a non-anthraquinone exploration
In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure–activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 μM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.