元基因组学和代谢组学综合分析揭示了颅内动脉瘤中不同阶段的肠道微生物衍生代谢物。

IF 23 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Gut Pub Date : 2024-09-09 DOI:10.1136/gutjnl-2024-332245
Haitao Sun, Kaijian Sun, Hao Tian, Xiheng Chen, Shixing Su, Yi Tu, Shilan Chen, Jiaxuan Wang, Meichang Peng, Meiqin Zeng, Xin Li, Yunhao Luo, Yugu Xie, Xin Feng, Zhuang Li, Xin Zhang, Xifeng Li, Yanchao Liu, Wei Ye, Zhengrui Chen, Zhaohua Zhu, Youxiang Li, Fangbo Xia, Hongwei Zhou, Chuanzhi Duan
{"title":"元基因组学和代谢组学综合分析揭示了颅内动脉瘤中不同阶段的肠道微生物衍生代谢物。","authors":"Haitao Sun, Kaijian Sun, Hao Tian, Xiheng Chen, Shixing Su, Yi Tu, Shilan Chen, Jiaxuan Wang, Meichang Peng, Meiqin Zeng, Xin Li, Yunhao Luo, Yugu Xie, Xin Feng, Zhuang Li, Xin Zhang, Xifeng Li, Yanchao Liu, Wei Ye, Zhengrui Chen, Zhaohua Zhu, Youxiang Li, Fangbo Xia, Hongwei Zhou, Chuanzhi Duan","doi":"10.1136/gutjnl-2024-332245","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome.</p><p><strong>Design: </strong>We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified.</p><p><strong>Results: </strong>Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion.</p><p><strong>Conclusion: </strong>Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.</p>","PeriodicalId":12825,"journal":{"name":"Gut","volume":" ","pages":"1662-1674"},"PeriodicalIF":23.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated metagenomic and metabolomic analysis reveals distinctive stage-specific gut-microbiome-derived metabolites in intracranial aneurysms.\",\"authors\":\"Haitao Sun, Kaijian Sun, Hao Tian, Xiheng Chen, Shixing Su, Yi Tu, Shilan Chen, Jiaxuan Wang, Meichang Peng, Meiqin Zeng, Xin Li, Yunhao Luo, Yugu Xie, Xin Feng, Zhuang Li, Xin Zhang, Xifeng Li, Yanchao Liu, Wei Ye, Zhengrui Chen, Zhaohua Zhu, Youxiang Li, Fangbo Xia, Hongwei Zhou, Chuanzhi Duan\",\"doi\":\"10.1136/gutjnl-2024-332245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome.</p><p><strong>Design: </strong>We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified.</p><p><strong>Results: </strong>Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion.</p><p><strong>Conclusion: </strong>Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.</p>\",\"PeriodicalId\":12825,\"journal\":{\"name\":\"Gut\",\"volume\":\" \",\"pages\":\"1662-1674\"},\"PeriodicalIF\":23.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/gutjnl-2024-332245\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/gutjnl-2024-332245","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的我们的研究旨在探索肠道微生物群及其代谢产物对颅内动脉瘤(IA)进展的影响,以及从肠道微生物群中提取的与点相关的代谢生物标志物:我们从两个不同的地理区域招募了358名未破裂动脉瘤(UIA)患者和161名破裂动脉瘤(RIA)患者,对血浆代谢组学和粪便元基因组学进行了综合分析。利用机器学习算法建立了一个分类器模型,随后在一个独立队列中进行了验证。建立了IA的小鼠模型,以验证所发现的特定代谢物的潜在作用:结果:在IA的不同阶段,观察到肠道微生物群及其相关代谢物的分类和功能特征发生了不同的变化。值得注意的是,色氨酸代谢物,尤其是硫酸吲哚酯(IS),在 RIA 的血浆中明显升高。同时,在 RIA 的肠道微生物组中观察到色氨酸酶表达上调和吲哚生产微生物群。利用肠道微生物群衍生的色氨酸代谢物建立的模型在区分验证队列中的RIA和UIA患者方面显示出显著的效果(AUC=0.97)。通过抗生素消耗肠道微生物群降低了血浆IS浓度,减少了小鼠IA的形成和破裂,并下调了动脉瘤壁中基质金属蛋白酶-9的表达,弹性蛋白降解减少。补充 IS 逆转了肠道微生物群耗竭的影响:我们的研究强调了肠道微生物衍生的色氨酸代谢物作为生物标志物的潜力,可用于区分 RIA 和 UIA 患者。研究结果表明,肠道微生物衍生的 IS 在内脏壁弹性蛋白降解导致内脏破裂的过程中起到了新的致病作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated metagenomic and metabolomic analysis reveals distinctive stage-specific gut-microbiome-derived metabolites in intracranial aneurysms.

Objective: Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome.

Design: We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified.

Results: Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion.

Conclusion: Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gut
Gut 医学-胃肠肝病学
CiteScore
45.70
自引率
2.40%
发文量
284
审稿时长
1.5 months
期刊介绍: Gut is a renowned international journal specializing in gastroenterology and hepatology, known for its high-quality clinical research covering the alimentary tract, liver, biliary tree, and pancreas. It offers authoritative and current coverage across all aspects of gastroenterology and hepatology, featuring articles on emerging disease mechanisms and innovative diagnostic and therapeutic approaches authored by leading experts. As the flagship journal of BMJ's gastroenterology portfolio, Gut is accompanied by two companion journals: Frontline Gastroenterology, focusing on education and practice-oriented papers, and BMJ Open Gastroenterology for open access original research.
期刊最新文献
Correction: The road to a world-unified approach to the management of patients with gastric intestinal metaplasia: a review of current guidelines Spatial dissection of tumour microenvironments in gastric cancers reveals the immunosuppressive crosstalk between CCL2+ fibroblasts and STAT3-activated macrophages Divergent lineage trajectories and genetic landscapes in human gastric intestinal metaplasia organoids associated with early neoplastic progression Faecal phageome transplantation alleviates intermittent intestinal inflammation in IBD and the timing of transplantation matters: a preclinical proof-of-concept study in mice Identifying colorectal cancer-specific vulnerabilities in the Wnt-driven long non-coding transcriptome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1