Subin K Thomas, Romina DSouza, Kate Hanneman, Gauri R Karur, Christian Houbois, Ayako Ishikita, Luigia D'Errico, Isaac Begun, Ming-Yen Ng, Rachel M Wald
{"title":"心肌变形参数对法洛氏四联症预后的预测价值。","authors":"Subin K Thomas, Romina DSouza, Kate Hanneman, Gauri R Karur, Christian Houbois, Ayako Ishikita, Luigia D'Errico, Isaac Begun, Ming-Yen Ng, Rachel M Wald","doi":"10.1016/j.jocmr.2024.101054","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prognostic value of myocardial deformation parameters in adults with repaired tetralogy of Fallot (rTOF) has not been well-elucidated. We therefore aimed to explore myocardial deformation parameters for outcome prediction in adults with rTOF using cardiovascular magnetic resonance imaging (CMR).</p><p><strong>Methods: </strong>Adults with rTOF and at least moderate pulmonary regurgitation were identified from an institutional prospective CMR registry. Left ventricular (LV) and right ventricular (RV) global strains were recorded in longitudinal (GLS), circumferential (GCS), and radial (GRS) directions. Major adverse cardiovascular events (MACE) were defined as a composite of mortality, resuscitated sudden death, sustained ventricular tachycardia (>30 seconds), or heart failure (hospital admission >24 hours). In patients with pulmonary valve replacement (PVR), pre- and post-PVR CMR studies were analyzed to assess for predictors of complete RV reverse remodeling, defined as indexed RV end-diastolic volume (RVEDVi) <110 mL/m<sup>2</sup>. Logistic regression models were used to estimate the odds ratio (OR) per unit change in absolute strain value associated with clinical outcomes and receiver operator characteristic curves were constructed with area under the curve (AUC) for select CMR variables.</p><p><strong>Results: </strong>We included 307 patients (age 35 ± 13 years, 59% (180/307) male). During 6.1 years (3.3-8.8) of follow-up, PVR was performed in 142 (46%) and MACE occurred in 31 (10%). On univariate analysis, baseline biventricular ejection fraction (EF), mass, and all strain parameters were associated with MACE. After adjustment for LVEF, only LV-GLS remained independently predictive of MACE (OR 0.822 [0.693-0.976] p = 0.025). Receiver operator curves identified an absolute LV-GLS value less than 15 and LVEF less than 51% as thresholds for MACE prediction (AUC 0.759 [0.655-0.840] and 0.720 [0.608-0.810]). After adjusting for baseline RVEDVi, RV-GCS (OR 1.323 [1.094-1.600] p = 0.004), LV-GCS (OR 1.276 [1.029-1.582] p = 0.027) and LV-GRS (OR 1.101 [1.0210-1.200], p = 0.028) were independent predictors of complete remodeling post-PVR remodeling.</p><p><strong>Conclusion: </strong>Biventricular strain parameters predict clinical outcomes and post-PVR remodeling in rTOF. Further study will be necessary to establish the role of myocardial deformation parameters in clinical practice.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101054"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prognostic value of myocardial deformation parameters for outcome prediction in tetralogy of Fallot.\",\"authors\":\"Subin K Thomas, Romina DSouza, Kate Hanneman, Gauri R Karur, Christian Houbois, Ayako Ishikita, Luigia D'Errico, Isaac Begun, Ming-Yen Ng, Rachel M Wald\",\"doi\":\"10.1016/j.jocmr.2024.101054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The prognostic value of myocardial deformation parameters in adults with repaired tetralogy of Fallot (rTOF) has not been well-elucidated. We therefore aimed to explore myocardial deformation parameters for outcome prediction in adults with rTOF using cardiovascular magnetic resonance imaging (CMR).</p><p><strong>Methods: </strong>Adults with rTOF and at least moderate pulmonary regurgitation were identified from an institutional prospective CMR registry. Left ventricular (LV) and right ventricular (RV) global strains were recorded in longitudinal (GLS), circumferential (GCS), and radial (GRS) directions. Major adverse cardiovascular events (MACE) were defined as a composite of mortality, resuscitated sudden death, sustained ventricular tachycardia (>30 seconds), or heart failure (hospital admission >24 hours). In patients with pulmonary valve replacement (PVR), pre- and post-PVR CMR studies were analyzed to assess for predictors of complete RV reverse remodeling, defined as indexed RV end-diastolic volume (RVEDVi) <110 mL/m<sup>2</sup>. Logistic regression models were used to estimate the odds ratio (OR) per unit change in absolute strain value associated with clinical outcomes and receiver operator characteristic curves were constructed with area under the curve (AUC) for select CMR variables.</p><p><strong>Results: </strong>We included 307 patients (age 35 ± 13 years, 59% (180/307) male). During 6.1 years (3.3-8.8) of follow-up, PVR was performed in 142 (46%) and MACE occurred in 31 (10%). On univariate analysis, baseline biventricular ejection fraction (EF), mass, and all strain parameters were associated with MACE. After adjustment for LVEF, only LV-GLS remained independently predictive of MACE (OR 0.822 [0.693-0.976] p = 0.025). Receiver operator curves identified an absolute LV-GLS value less than 15 and LVEF less than 51% as thresholds for MACE prediction (AUC 0.759 [0.655-0.840] and 0.720 [0.608-0.810]). After adjusting for baseline RVEDVi, RV-GCS (OR 1.323 [1.094-1.600] p = 0.004), LV-GCS (OR 1.276 [1.029-1.582] p = 0.027) and LV-GRS (OR 1.101 [1.0210-1.200], p = 0.028) were independent predictors of complete remodeling post-PVR remodeling.</p><p><strong>Conclusion: </strong>Biventricular strain parameters predict clinical outcomes and post-PVR remodeling in rTOF. Further study will be necessary to establish the role of myocardial deformation parameters in clinical practice.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101054\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101054\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101054","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Prognostic value of myocardial deformation parameters for outcome prediction in tetralogy of Fallot.
Background: The prognostic value of myocardial deformation parameters in adults with repaired tetralogy of Fallot (rTOF) has not been well-elucidated. We therefore aimed to explore myocardial deformation parameters for outcome prediction in adults with rTOF using cardiovascular magnetic resonance imaging (CMR).
Methods: Adults with rTOF and at least moderate pulmonary regurgitation were identified from an institutional prospective CMR registry. Left ventricular (LV) and right ventricular (RV) global strains were recorded in longitudinal (GLS), circumferential (GCS), and radial (GRS) directions. Major adverse cardiovascular events (MACE) were defined as a composite of mortality, resuscitated sudden death, sustained ventricular tachycardia (>30 seconds), or heart failure (hospital admission >24 hours). In patients with pulmonary valve replacement (PVR), pre- and post-PVR CMR studies were analyzed to assess for predictors of complete RV reverse remodeling, defined as indexed RV end-diastolic volume (RVEDVi) <110 mL/m2. Logistic regression models were used to estimate the odds ratio (OR) per unit change in absolute strain value associated with clinical outcomes and receiver operator characteristic curves were constructed with area under the curve (AUC) for select CMR variables.
Results: We included 307 patients (age 35 ± 13 years, 59% (180/307) male). During 6.1 years (3.3-8.8) of follow-up, PVR was performed in 142 (46%) and MACE occurred in 31 (10%). On univariate analysis, baseline biventricular ejection fraction (EF), mass, and all strain parameters were associated with MACE. After adjustment for LVEF, only LV-GLS remained independently predictive of MACE (OR 0.822 [0.693-0.976] p = 0.025). Receiver operator curves identified an absolute LV-GLS value less than 15 and LVEF less than 51% as thresholds for MACE prediction (AUC 0.759 [0.655-0.840] and 0.720 [0.608-0.810]). After adjusting for baseline RVEDVi, RV-GCS (OR 1.323 [1.094-1.600] p = 0.004), LV-GCS (OR 1.276 [1.029-1.582] p = 0.027) and LV-GRS (OR 1.101 [1.0210-1.200], p = 0.028) were independent predictors of complete remodeling post-PVR remodeling.
Conclusion: Biventricular strain parameters predict clinical outcomes and post-PVR remodeling in rTOF. Further study will be necessary to establish the role of myocardial deformation parameters in clinical practice.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.