Alexis Diaz-Vegas , Kristen C. Cooke , Harry B. Cutler , Belinda Yau , Stewart W.C. Masson , Dylan Harney , Oliver K. Fuller , Meg Potter , Søren Madsen , Niamh R. Craw , Yiju Zhang , Cesar L. Moreno , Melkam A. Kebede , G. Gregory Neely , Jacqueline Stöckli , James G. Burchfield , David E. James
{"title":"在脂肪细胞中删除 miPEP 可通过促进肌肉新陈代谢防止肥胖和胰岛素抵抗。","authors":"Alexis Diaz-Vegas , Kristen C. Cooke , Harry B. Cutler , Belinda Yau , Stewart W.C. Masson , Dylan Harney , Oliver K. Fuller , Meg Potter , Søren Madsen , Niamh R. Craw , Yiju Zhang , Cesar L. Moreno , Melkam A. Kebede , G. Gregory Neely , Jacqueline Stöckli , James G. Burchfield , David E. James","doi":"10.1016/j.molmet.2024.101983","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria facilitate thousands of biochemical reactions, covering a broad spectrum of anabolic and catabolic processes. Here we demonstrate that the adipocyte mitochondrial proteome is markedly altered across multiple models of insulin resistance and reveal a consistent decrease in the level of the mitochondrial processing peptidase miPEP.</p></div><div><h3>Objective</h3><p>To determine the role of miPEP in insulin resistance.</p></div><div><h3>Methods</h3><p>To experimentally test this observation, we generated adipocyte-specific miPEP knockout mice to interrogate its role in the aetiology of insulin resistance.</p></div><div><h3>Results</h3><p>We observed a strong phenotype characterised by enhanced insulin sensitivity and reduced adiposity, despite normal food intake and physical activity. Strikingly, these phenotypes vanished when mice were housed at thermoneutrality, suggesting that metabolic protection conferred by miPEP deletion hinges upon a thermoregulatory process. Tissue specific analysis of miPEP deficient mice revealed an increment in muscle metabolism, and upregulation of the protein FBP2 that is involved in ATP hydrolysis in the gluconeogenic pathway.</p></div><div><h3>Conclusion</h3><p>These findings suggest that miPEP deletion initiates a compensatory increase in skeletal muscle metabolism acting as a protective mechanism against diet-induced obesity and insulin resistance.</p></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"86 ","pages":"Article 101983"},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212877824001145/pdfft?md5=1611a0194364d36b5468c6e2cfbb73bc&pid=1-s2.0-S2212877824001145-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deletion of miPEP in adipocytes protects against obesity and insulin resistance by boosting muscle metabolism\",\"authors\":\"Alexis Diaz-Vegas , Kristen C. Cooke , Harry B. Cutler , Belinda Yau , Stewart W.C. Masson , Dylan Harney , Oliver K. Fuller , Meg Potter , Søren Madsen , Niamh R. Craw , Yiju Zhang , Cesar L. Moreno , Melkam A. Kebede , G. Gregory Neely , Jacqueline Stöckli , James G. Burchfield , David E. James\",\"doi\":\"10.1016/j.molmet.2024.101983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondria facilitate thousands of biochemical reactions, covering a broad spectrum of anabolic and catabolic processes. Here we demonstrate that the adipocyte mitochondrial proteome is markedly altered across multiple models of insulin resistance and reveal a consistent decrease in the level of the mitochondrial processing peptidase miPEP.</p></div><div><h3>Objective</h3><p>To determine the role of miPEP in insulin resistance.</p></div><div><h3>Methods</h3><p>To experimentally test this observation, we generated adipocyte-specific miPEP knockout mice to interrogate its role in the aetiology of insulin resistance.</p></div><div><h3>Results</h3><p>We observed a strong phenotype characterised by enhanced insulin sensitivity and reduced adiposity, despite normal food intake and physical activity. Strikingly, these phenotypes vanished when mice were housed at thermoneutrality, suggesting that metabolic protection conferred by miPEP deletion hinges upon a thermoregulatory process. Tissue specific analysis of miPEP deficient mice revealed an increment in muscle metabolism, and upregulation of the protein FBP2 that is involved in ATP hydrolysis in the gluconeogenic pathway.</p></div><div><h3>Conclusion</h3><p>These findings suggest that miPEP deletion initiates a compensatory increase in skeletal muscle metabolism acting as a protective mechanism against diet-induced obesity and insulin resistance.</p></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"86 \",\"pages\":\"Article 101983\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001145/pdfft?md5=1611a0194364d36b5468c6e2cfbb73bc&pid=1-s2.0-S2212877824001145-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001145\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001145","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Deletion of miPEP in adipocytes protects against obesity and insulin resistance by boosting muscle metabolism
Mitochondria facilitate thousands of biochemical reactions, covering a broad spectrum of anabolic and catabolic processes. Here we demonstrate that the adipocyte mitochondrial proteome is markedly altered across multiple models of insulin resistance and reveal a consistent decrease in the level of the mitochondrial processing peptidase miPEP.
Objective
To determine the role of miPEP in insulin resistance.
Methods
To experimentally test this observation, we generated adipocyte-specific miPEP knockout mice to interrogate its role in the aetiology of insulin resistance.
Results
We observed a strong phenotype characterised by enhanced insulin sensitivity and reduced adiposity, despite normal food intake and physical activity. Strikingly, these phenotypes vanished when mice were housed at thermoneutrality, suggesting that metabolic protection conferred by miPEP deletion hinges upon a thermoregulatory process. Tissue specific analysis of miPEP deficient mice revealed an increment in muscle metabolism, and upregulation of the protein FBP2 that is involved in ATP hydrolysis in the gluconeogenic pathway.
Conclusion
These findings suggest that miPEP deletion initiates a compensatory increase in skeletal muscle metabolism acting as a protective mechanism against diet-induced obesity and insulin resistance.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.