权衡利弊驱动复杂微生物群落的进化和稳定。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2024-09-01 Epub Date: 2024-07-03 DOI:10.1038/s44320-024-00051-8
Yanqing Huang, Avik Mukherjee, Severin Schink, Nina Catherine Benites, Markus Basan
{"title":"权衡利弊驱动复杂微生物群落的进化和稳定。","authors":"Yanqing Huang, Avik Mukherjee, Severin Schink, Nina Catherine Benites, Markus Basan","doi":"10.1038/s44320-024-00051-8","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolution and stability of complex microbial communities driven by trade-offs.\",\"authors\":\"Yanqing Huang, Avik Mukherjee, Severin Schink, Nina Catherine Benites, Markus Basan\",\"doi\":\"10.1038/s44320-024-00051-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-024-00051-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00051-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物群落在自然界中无处不在,在生态学和人类健康中发挥着重要作用。交叉取食被认为是微生物群落的核心,但交叉取食出现的确切原因仍不清楚。为什么多物种微生物群落会在许多情况下进化,是什么保护了微生物联合体免受入侵?在此,我们回顾了最近对微生物群落共存的出现和稳定性的见解。一个特别的重点是共存的长期进化稳定性,正如在大肠杆菌长期进化实验(LTEE)中自发进化的微生物群落所观察到的那样。我们结合最近关于相互竞争的微生物目标之间权衡的研究成果分析了这些发现,这些研究成果可以构成共存出现的机理基础。共存群落,而不是 "最合适 "的单一菌株的单一培养,可以形成进化轨迹的稳定终点。因此,共存的出现可能是微生物群落进化的必然结果。这意味着,一些微生物群落不是脆弱的易变构型,而是可以构成难以破坏的强大生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution and stability of complex microbial communities driven by trade-offs.

Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. XCMS-METLIN: data-driven metabolite, lipid, and chemical analysis. Author Correction: Predictive evolution of metabolic phenotypes using model-designed environments. Correction of a widespread bias in pooled chemical genomics screens improves their interpretability. Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1