在用于床旁检测系统的集成微流控装置中高效富集游离目标序列。

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-07-02 DOI:10.1016/j.nano.2024.102771
Elisa Erice PhD , Oihane Mitxelena-Iribarren PhD , Sergio Arana PhD , Charles H. Lawrie PhD , Maite Mujika PhD
{"title":"在用于床旁检测系统的集成微流控装置中高效富集游离目标序列。","authors":"Elisa Erice PhD ,&nbsp;Oihane Mitxelena-Iribarren PhD ,&nbsp;Sergio Arana PhD ,&nbsp;Charles H. Lawrie PhD ,&nbsp;Maite Mujika PhD","doi":"10.1016/j.nano.2024.102771","DOIUrl":null,"url":null,"abstract":"<div><p>Nucleic acid biomarker detection has great importance in the diagnosis of disease, the monitoring of disease progression and the classification of patients according to treatment decision making. Nucleic acid biomarkers found in the blood of patients have generated a lot of interest due to the possibility of being detected non-invasively which makes them ideal for monitoring and screening tests and particularly amenable to point-of-care (POC) or self-testing. A major challenge to POC molecular diagnostics is the need to enrich the target to optimise detection. In this work, we describe a microfabricated device for the enrichment of short dsDNA target sequences, which is especially valuable for potential detection methods, as it improves the probability of effectively detecting the target in downstream analyses. The device integrated a heating element and a temperature sensor with a microfluidic chamber to carry out the denaturation of the dsDNA combined with blocking-probes to enrich the target. This procedure was validated by fluorescence resonance energy transfer (FRET) technique, labelling DNA with a fluorophore and a quencher. As proof of concept, a 23-mer long dsDNA sequence corresponding to the L858R mutation of the <em>EGFR</em> gene was used. The qualitative results obtained determined that the most optimal blocking rate was obtained with the incorporation of 11/12-mer blocking-probes at a total concentration of 6 μM. This device is a powerful DNA preparation tool, which is an indispensable initial step for subsequent detection of sequences via nucleic acid hybridisation methods.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"61 ","pages":"Article 102771"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient enrichment of free target sequences in an integrated microfluidic device for point-of-care detection systems\",\"authors\":\"Elisa Erice PhD ,&nbsp;Oihane Mitxelena-Iribarren PhD ,&nbsp;Sergio Arana PhD ,&nbsp;Charles H. Lawrie PhD ,&nbsp;Maite Mujika PhD\",\"doi\":\"10.1016/j.nano.2024.102771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nucleic acid biomarker detection has great importance in the diagnosis of disease, the monitoring of disease progression and the classification of patients according to treatment decision making. Nucleic acid biomarkers found in the blood of patients have generated a lot of interest due to the possibility of being detected non-invasively which makes them ideal for monitoring and screening tests and particularly amenable to point-of-care (POC) or self-testing. A major challenge to POC molecular diagnostics is the need to enrich the target to optimise detection. In this work, we describe a microfabricated device for the enrichment of short dsDNA target sequences, which is especially valuable for potential detection methods, as it improves the probability of effectively detecting the target in downstream analyses. The device integrated a heating element and a temperature sensor with a microfluidic chamber to carry out the denaturation of the dsDNA combined with blocking-probes to enrich the target. This procedure was validated by fluorescence resonance energy transfer (FRET) technique, labelling DNA with a fluorophore and a quencher. As proof of concept, a 23-mer long dsDNA sequence corresponding to the L858R mutation of the <em>EGFR</em> gene was used. The qualitative results obtained determined that the most optimal blocking rate was obtained with the incorporation of 11/12-mer blocking-probes at a total concentration of 6 μM. This device is a powerful DNA preparation tool, which is an indispensable initial step for subsequent detection of sequences via nucleic acid hybridisation methods.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"61 \",\"pages\":\"Article 102771\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963424000406\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

核酸生物标记物检测在疾病诊断、疾病进展监测和根据治疗决策对患者进行分类方面具有重要意义。从患者血液中发现的核酸生物标记物引起了人们的极大兴趣,因为这种标记物可以无创检测,是监测和筛查试验的理想选择,尤其适合于护理点(POC)或自我检测。POC 分子诊断面临的一个主要挑战是需要富集靶标以优化检测。在这项工作中,我们描述了一种用于富集短 dsDNA 目标序列的微加工装置,这对潜在的检测方法尤其有价值,因为它提高了在下游分析中有效检测目标的概率。该装置将一个加热元件和一个温度传感器与一个微流体室集成在一起,用于对dsDNA进行变性,并结合阻断探针来富集目标。这一过程通过荧光共振能量转移(FRET)技术进行了验证,用荧光团和淬灭剂标记 DNA。作为概念验证,使用了与表皮生长因子受体(EGFR)基因 L858R 突变相对应的 23-mer 长 dsDNA 序列。定性结果表明,在总浓度为 6 μM 的情况下,加入 11/12 个聚合物的阻断探针可获得最佳阻断率。该装置是一种功能强大的 DNA 制备工具,是随后通过核酸杂交方法检测序列不可或缺的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient enrichment of free target sequences in an integrated microfluidic device for point-of-care detection systems

Nucleic acid biomarker detection has great importance in the diagnosis of disease, the monitoring of disease progression and the classification of patients according to treatment decision making. Nucleic acid biomarkers found in the blood of patients have generated a lot of interest due to the possibility of being detected non-invasively which makes them ideal for monitoring and screening tests and particularly amenable to point-of-care (POC) or self-testing. A major challenge to POC molecular diagnostics is the need to enrich the target to optimise detection. In this work, we describe a microfabricated device for the enrichment of short dsDNA target sequences, which is especially valuable for potential detection methods, as it improves the probability of effectively detecting the target in downstream analyses. The device integrated a heating element and a temperature sensor with a microfluidic chamber to carry out the denaturation of the dsDNA combined with blocking-probes to enrich the target. This procedure was validated by fluorescence resonance energy transfer (FRET) technique, labelling DNA with a fluorophore and a quencher. As proof of concept, a 23-mer long dsDNA sequence corresponding to the L858R mutation of the EGFR gene was used. The qualitative results obtained determined that the most optimal blocking rate was obtained with the incorporation of 11/12-mer blocking-probes at a total concentration of 6 μM. This device is a powerful DNA preparation tool, which is an indispensable initial step for subsequent detection of sequences via nucleic acid hybridisation methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Comparison of cholesterol transport capacity of peptide- and polymer-based lipid Nanodiscs Retraction notice to “In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies” [Nanomedicine: Nanotechnology, Biology and Medicine 10/1 (2014) 225–234] Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. Micellar curcumol for maintenance therapy of ovarian cancer by activating the FOXO3a Conceptual rationale for the use of chemically modified nanocomposites for active influence on atherosclerosis using the greater omentum model of experimental animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1