{"title":"糖皮质激素受体调节剂 PT150 对罗替尼帕金森病小鼠模型的神经保护作用","authors":"","doi":"10.1016/j.neuro.2024.06.017","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"103 ","pages":"Pages 320-334"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective efficacy of the glucocorticoid receptor modulator PT150 in the rotenone mouse model of Parkinson’s disease\",\"authors\":\"\",\"doi\":\"10.1016/j.neuro.2024.06.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.</p></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"103 \",\"pages\":\"Pages 320-334\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X24000718\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X24000718","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
帕金森病(PD)是全球最常见的神经退行性运动障碍疾病。目前治疗帕金森病的方法主要以多巴胺替代疗法为主,但却无法阻止病变的发展,这凸显了神经保护干预措施的必要性。黑质(SN)多巴胺能神经元(DAn)缺失之前会出现神经炎症,针对神经炎症的方法是一种很有前景的治疗策略。糖皮质激素受体(GR)与帕金森病的神经病理学有关,并调节大脑中的多种神经炎症信号通路。因此,我们研究了新型 GR 调节剂 PT150 在鱼藤酮 PD 小鼠模型中的神经保护作用,假设抑制神经胶质炎症将保护 DAn 并减少神经毒性错误折叠的 ⍺-突触核蛋白的积累。C57Bl/6小鼠腹腔注射2.5mg/kg/天的鱼藤酮,连续14天。给小鼠注射完鱼藤酮后,在第15天口服30毫克/千克/天或100毫克/千克/天的PT150进行治疗,这是小鼠脑损伤后14天的潜伏期,DAn的大部分损失和α-突触核蛋白(α-syn)的积累都发生在这一时期。我们的研究结果表明,用 PT150 治疗可减少黑质通路中 DAn 的丢失和小胶质细胞的增生。虽然星形胶质细胞病变的形态特征没有减轻,但 PT150 治疗促进了这些细胞潜在的神经保护活性,包括增加了对高磷酸化 α-syn 的吞噬作用。最终,PT150 治疗减少了神经元上皮细胞体的丢失,但没有减少纹状体上皮细胞体的丢失,并禁止了 α-syn 在神经元内的积聚。这些数据共同表明,PT150 能有效减轻鱼藤酮小鼠帕金森病模型的神经元病理变化。
Neuroprotective efficacy of the glucocorticoid receptor modulator PT150 in the rotenone mouse model of Parkinson’s disease
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.