Bingsen Wang, Jiahui Luan, Weidong Zhao, Junbao Yu, Anqing Li, Xinxin Li, Xiaoqin Zhong, Hongyun Cao, Ruicai Wang, Bo Liu, Shiyong Lu, Mei Shi
{"title":"对胃癌发生过程中不同胃微生境下胃黏膜细菌和血浆代谢物特征的多组学综合分析","authors":"Bingsen Wang, Jiahui Luan, Weidong Zhao, Junbao Yu, Anqing Li, Xinxin Li, Xiaoqin Zhong, Hongyun Cao, Ruicai Wang, Bo Liu, Shiyong Lu, Mei Shi","doi":"10.1007/s13402-024-00965-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis.</p><p><strong>Methods: </strong>Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches.</p><p><strong>Results: </strong>The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer.</p><p><strong>Conclusion: </strong>The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive multiomics analysis of the signatures of gastric mucosal bacteria and plasma metabolites across different stomach microhabitats in the development of gastric cancer.\",\"authors\":\"Bingsen Wang, Jiahui Luan, Weidong Zhao, Junbao Yu, Anqing Li, Xinxin Li, Xiaoqin Zhong, Hongyun Cao, Ruicai Wang, Bo Liu, Shiyong Lu, Mei Shi\",\"doi\":\"10.1007/s13402-024-00965-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis.</p><p><strong>Methods: </strong>Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches.</p><p><strong>Results: </strong>The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer.</p><p><strong>Conclusion: </strong>The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-024-00965-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00965-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Comprehensive multiomics analysis of the signatures of gastric mucosal bacteria and plasma metabolites across different stomach microhabitats in the development of gastric cancer.
Purpose: As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis.
Methods: Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches.
Results: The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer.
Conclusion: The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.