{"title":"Sasa veitchii 提取物对全反式维甲酸诱导的人腭细胞增殖抑制的保护作用。","authors":"Yosuke Tsukiboshi, Yurie Mikami, Hanane Horita, Aya Ogata, Azumi Noguchi, Satoshi Yokota, Kenichi Ogata, Hiroki Yoshioka","doi":"10.18999/nagjms.86.2.223","DOIUrl":null,"url":null,"abstract":"<p><p>Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of <i>Sasa veitchii</i> extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that <i>all-trans</i>-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with <i>Sasa veitchii</i> extract repressed <i>all-trans</i>-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with <i>Sasa veitchii</i> extract protected <i>all-trans</i>-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, <i>Sasa veitchii</i> extract suppressed <i>all-trans</i>-retinoic acid<i>-</i>induced <i>miR-4680-3p</i> expression. Additionally, the expression levels of the genes that function downstream of the target genes <i>(</i> <i>ERBB2</i> and <i>JADE1</i> <i>)</i> of <i>miR-4680-3p</i> in signaling pathways were enhanced by cotreatment with <i>Sasa veitchii</i> extract and <i>all-trans</i>-retinoic acid compared to <i>all-trans</i>-retinoic acid treatment. These results suggest that <i>Sasa veitchii</i> extract suppresses <i>all-trans</i>-retinoic acid-induced inhibition of cell proliferation via modulation of <i>miR-4680-3p</i> expression.</p>","PeriodicalId":49014,"journal":{"name":"Nagoya Journal of Medical Science","volume":"86 2","pages":"223-236"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protective effect of <i>Sasa veitchii</i> extract against all-trans-retinoic acid-induced inhibition of proliferation of cultured human palate cells.\",\"authors\":\"Yosuke Tsukiboshi, Yurie Mikami, Hanane Horita, Aya Ogata, Azumi Noguchi, Satoshi Yokota, Kenichi Ogata, Hiroki Yoshioka\",\"doi\":\"10.18999/nagjms.86.2.223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of <i>Sasa veitchii</i> extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that <i>all-trans</i>-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with <i>Sasa veitchii</i> extract repressed <i>all-trans</i>-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with <i>Sasa veitchii</i> extract protected <i>all-trans</i>-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, <i>Sasa veitchii</i> extract suppressed <i>all-trans</i>-retinoic acid<i>-</i>induced <i>miR-4680-3p</i> expression. Additionally, the expression levels of the genes that function downstream of the target genes <i>(</i> <i>ERBB2</i> and <i>JADE1</i> <i>)</i> of <i>miR-4680-3p</i> in signaling pathways were enhanced by cotreatment with <i>Sasa veitchii</i> extract and <i>all-trans</i>-retinoic acid compared to <i>all-trans</i>-retinoic acid treatment. These results suggest that <i>Sasa veitchii</i> extract suppresses <i>all-trans</i>-retinoic acid-induced inhibition of cell proliferation via modulation of <i>miR-4680-3p</i> expression.</p>\",\"PeriodicalId\":49014,\"journal\":{\"name\":\"Nagoya Journal of Medical Science\",\"volume\":\"86 2\",\"pages\":\"223-236\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Journal of Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.18999/nagjms.86.2.223\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Journal of Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18999/nagjms.86.2.223","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
腭裂是全球最常见的面部出生缺陷。它是由环境因素或基因突变引起的。众所周知,妇女接触药物等环境因素会诱发腭裂。本研究旨在探讨 Sasa veitchii 提取物对药物引起的人胚胎腭间质细胞增殖抑制的保护作用。我们发现,全反式维甲酸以剂量依赖的方式抑制人胚腭间质细胞的增殖,而地塞米松处理对细胞增殖没有影响。与 Sasa veitchii 提取物共处理可抑制全反式维甲酸诱导的人胚胎腭间充质细胞毒性。我们发现,与荞麦提取物共处理可保护全反式维甲酸诱导的人胚颚间充质细胞中细胞周期蛋白 D1 的下调。此外,沙棘提取物还能抑制全反式维甲酸诱导的 miR-4680-3p 的表达。此外,与全反式维甲酸处理相比,在信号通路中,miR-4680-3p的靶基因(ERBB2和JADE1)下游功能基因的表达水平在莎萝葡萄提取物和全反式维甲酸共同处理后得到提高。这些结果表明,沙棘提取物通过调节miR-4680-3p的表达抑制了全反式维甲酸诱导的细胞增殖。
Protective effect of Sasa veitchii extract against all-trans-retinoic acid-induced inhibition of proliferation of cultured human palate cells.
Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes (ERBB2 and JADE1) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.
期刊介绍:
The Journal publishes original papers in the areas of medical science and its related fields. Reviews, symposium reports, short communications, notes, case reports, hypothesis papers, medical image at a glance, video and announcements are also accepted.
Manuscripts should be in English. It is recommended that an English check of the manuscript by a competent and knowledgeable native speaker be completed before submission.