人工智能在检测病理性胃不典型性和肿瘤病变中的实际应用。

IF 3.2 4区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY Journal of Gastric Cancer Pub Date : 2024-07-01 DOI:10.5230/jgc.2024.24.e28
Young Hoon Chang, Cheol Min Shin, Hae Dong Lee, Jinbae Park, Jiwoon Jeon, Soo-Jeong Cho, Seung Joo Kang, Jae-Yong Chung, Yu Kyung Jun, Yonghoon Choi, Hyuk Yoon, Young Soo Park, Nayoung Kim, Dong Ho Lee
{"title":"人工智能在检测病理性胃不典型性和肿瘤病变中的实际应用。","authors":"Young Hoon Chang, Cheol Min Shin, Hae Dong Lee, Jinbae Park, Jiwoon Jeon, Soo-Jeong Cho, Seung Joo Kang, Jae-Yong Chung, Yu Kyung Jun, Yonghoon Choi, Hyuk Yoon, Young Soo Park, Nayoung Kim, Dong Ho Lee","doi":"10.5230/jgc.2024.24.e28","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.</p><p><strong>Materials and methods: </strong>We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).</p><p><strong>Results: </strong>ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively.</p><p><strong>Conclusions: </strong>ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.</p>","PeriodicalId":56072,"journal":{"name":"Journal of Gastric Cancer","volume":"24 3","pages":"327-340"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224715/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions.\",\"authors\":\"Young Hoon Chang, Cheol Min Shin, Hae Dong Lee, Jinbae Park, Jiwoon Jeon, Soo-Jeong Cho, Seung Joo Kang, Jae-Yong Chung, Yu Kyung Jun, Yonghoon Choi, Hyuk Yoon, Young Soo Park, Nayoung Kim, Dong Ho Lee\",\"doi\":\"10.5230/jgc.2024.24.e28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.</p><p><strong>Materials and methods: </strong>We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).</p><p><strong>Results: </strong>ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively.</p><p><strong>Conclusions: </strong>ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.</p>\",\"PeriodicalId\":56072,\"journal\":{\"name\":\"Journal of Gastric Cancer\",\"volume\":\"24 3\",\"pages\":\"327-340\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Gastric Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5230/jgc.2024.24.e28\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gastric Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5230/jgc.2024.24.e28","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:胃部病变的初步内镜活检结果往往与最终病理诊断结果不同。我们评估了基于人工智能的胃病变检测和诊断系统--ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy(ENAD CAD-G)--能否减少这种差异:我们回顾性地收集了2011年至2021年间9892名接受食管胃十二指肠镜检查的患者的24948张早期胃癌(EGC)、发育不良和良性病变的内镜图像。我们使用以下真实世界数据集对ENAD CAD-G的诊断性能进行了评估:由社区诊所转诊且初步活检结果为非典型的患者(n=154)、因肿瘤而接受内镜切除术的参与者(内部视频集,n=140),以及由社区诊所转诊的因筛查或怀疑胃肿瘤而接受内镜检查的参与者(外部视频集,n=296):结果:ENAD CAD-G 将转诊的非典型胃病变分为 EGC(准确率为 82.47%;95% 置信区间 [CI],76.46%-88.47%)、发育不良(88.31%;83.24%-93.39%)和良性病变(83.12%;77.20%-89.03%)。在内部视频集中,ENAD CAD-G 对发育不良和 EGC 的诊断准确率分别为 88.57% (95% CI, 83.30%-93.84%) 和 91.43% (86.79%-96.07%),而初始活检结果的准确率为 60.71% (52.62%-68.80%)(结论:ENAD CAD-G 的诊断准确率优于初始活检结果):在检测和诊断需要内镜切除的胃部病变方面,ENAD CAD-G优于初始活检。ENAD CAD-G可帮助社区内镜医师识别需要内镜切除的胃部病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions.

Purpose: Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.

Materials and methods: We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).

Results: ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively.

Conclusions: ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Gastric Cancer
Journal of Gastric Cancer Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
4.30
自引率
12.00%
发文量
36
期刊介绍: The Journal of Gastric Cancer (J Gastric Cancer) is an international peer-reviewed journal. Each issue carries high quality clinical and translational researches on gastric neoplasms. Editorial Board of J Gastric Cancer publishes original articles on pathophysiology, molecular oncology, diagnosis, treatment, and prevention of gastric cancer as well as articles on dietary control and improving the quality of life for gastric cancer patients. J Gastric Cancer includes case reports, review articles, how I do it articles, editorials, and letters to the editor.
期刊最新文献
Association of Soy Foods With Gastric Cancer Considering Helicobacter pylori: A Multi-Center Case-Control Study. Clinical Feasibility of Vascular Navigation System During Laparoscopic Gastrectomy for Gastric Cancer: A Retrospective Comparison With Propensity-Score Matching. Clinicopathologic Characteristics of Trop Family Proteins (Trop-2 and EpCAM) in Gastric Carcinoma. Clinicopathologic Features and Outcomes of Endoscopic Submucosal Dissection for Foveolar-Type Adenocarcinoma of the Stomach. Development and Feasibility Assessment of Mobile Application-Based Digital Therapeutics for Postoperative Supportive Care in Gastric Cancer Patients Following Gastrectomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1