{"title":"[治疗血栓性血小板减少性紫癜的进展]。","authors":"Masahito Uchihara, Masayuki Kubo, Masanori Matsumoto","doi":"10.11406/rinketsu.65.567","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombotic thrombocytopenic purpura (TTP) is a fatal thrombotic disease caused by a marked decrease in the activity of ADAMTS13, a von Willebrand factor cleaving protease. In congenital TTP, ADAMTS13 activity is decreased by an abnormality in ADAMTS13, and in acquired TTP, by anti-ADAMTS13 autoantibody. Death from thrombosis in the acute phase has been an issue with conventional treatment of acquired TTP by plasma exchange or immunosuppressive therapy. However, the advent of caplacizumab, an anti-VWF nanobody, has made it possible to suppress thrombus formation and is expected to improve survival rates. In addition, some case series have shown the efficacy of caplacizumab without plasma exchange for acquired TTP, and this approach is being investigated in clinical trials. Fresh-frozen plasma is transfused to supply ADAMTS13 for congenital TTP, but frequent transfusions over a long period of time can lead to problems such as infection and allergic reactions. Novel therapies such as recombinant ADAMTS13 products and gene therapy are now under development, and show promise for future clinical use.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":"65 6","pages":"567-575"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Advances in the treatment of thrombotic thrombocytopenic purpura].\",\"authors\":\"Masahito Uchihara, Masayuki Kubo, Masanori Matsumoto\",\"doi\":\"10.11406/rinketsu.65.567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thrombotic thrombocytopenic purpura (TTP) is a fatal thrombotic disease caused by a marked decrease in the activity of ADAMTS13, a von Willebrand factor cleaving protease. In congenital TTP, ADAMTS13 activity is decreased by an abnormality in ADAMTS13, and in acquired TTP, by anti-ADAMTS13 autoantibody. Death from thrombosis in the acute phase has been an issue with conventional treatment of acquired TTP by plasma exchange or immunosuppressive therapy. However, the advent of caplacizumab, an anti-VWF nanobody, has made it possible to suppress thrombus formation and is expected to improve survival rates. In addition, some case series have shown the efficacy of caplacizumab without plasma exchange for acquired TTP, and this approach is being investigated in clinical trials. Fresh-frozen plasma is transfused to supply ADAMTS13 for congenital TTP, but frequent transfusions over a long period of time can lead to problems such as infection and allergic reactions. Novel therapies such as recombinant ADAMTS13 products and gene therapy are now under development, and show promise for future clinical use.</p>\",\"PeriodicalId\":93844,\"journal\":{\"name\":\"[Rinsho ketsueki] The Japanese journal of clinical hematology\",\"volume\":\"65 6\",\"pages\":\"567-575\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Rinsho ketsueki] The Japanese journal of clinical hematology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11406/rinketsu.65.567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Rinsho ketsueki] The Japanese journal of clinical hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11406/rinketsu.65.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Advances in the treatment of thrombotic thrombocytopenic purpura].
Thrombotic thrombocytopenic purpura (TTP) is a fatal thrombotic disease caused by a marked decrease in the activity of ADAMTS13, a von Willebrand factor cleaving protease. In congenital TTP, ADAMTS13 activity is decreased by an abnormality in ADAMTS13, and in acquired TTP, by anti-ADAMTS13 autoantibody. Death from thrombosis in the acute phase has been an issue with conventional treatment of acquired TTP by plasma exchange or immunosuppressive therapy. However, the advent of caplacizumab, an anti-VWF nanobody, has made it possible to suppress thrombus formation and is expected to improve survival rates. In addition, some case series have shown the efficacy of caplacizumab without plasma exchange for acquired TTP, and this approach is being investigated in clinical trials. Fresh-frozen plasma is transfused to supply ADAMTS13 for congenital TTP, but frequent transfusions over a long period of time can lead to problems such as infection and allergic reactions. Novel therapies such as recombinant ADAMTS13 products and gene therapy are now under development, and show promise for future clinical use.