{"title":"通过瓦瑟斯坦度量非线性依赖概率度量的随机优化问题","authors":"Vlasta Kaňková","doi":"10.1007/s10898-024-01380-6","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear dependence on a probability measure has recently been encountered with increasing intensity in stochastic optimization. This type of dependence corresponds to many situations in applications; it can appear in problems static (one-stage), dynamic with finite (multi-stage) or infinite horizon, and single- and multi-objective ones. Moreover, the nonlinear dependence can appear not only in the objective functions but also in the constraint sets. In this paper, we will consider static one-objective problems in which the nonlinear dependence appears in the objective function and may also appear in the constraint sets. In detail, we consider “deterministic” constraint sets, whose dependence on the probability measure is nonlinear, constraint sets determined by second-order stochastic dominance, and sets given by mean-risk problems. The last mentioned instance means that the constraint set corresponds to solutions which guarantee acceptable values of both criteria. To obtain relevant assertions, we employ the stability results given by the Wasserstein metric, based on the <span>\\( {{\\mathcal {L}}}_{1} \\)</span> norm. We mainly focus on the case in which a solution has to be obtained on the basis of the data and of investigating a relationship between the original problem and its empirical version.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic optimization problems with nonlinear dependence on a probability measure via the Wasserstein metric\",\"authors\":\"Vlasta Kaňková\",\"doi\":\"10.1007/s10898-024-01380-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonlinear dependence on a probability measure has recently been encountered with increasing intensity in stochastic optimization. This type of dependence corresponds to many situations in applications; it can appear in problems static (one-stage), dynamic with finite (multi-stage) or infinite horizon, and single- and multi-objective ones. Moreover, the nonlinear dependence can appear not only in the objective functions but also in the constraint sets. In this paper, we will consider static one-objective problems in which the nonlinear dependence appears in the objective function and may also appear in the constraint sets. In detail, we consider “deterministic” constraint sets, whose dependence on the probability measure is nonlinear, constraint sets determined by second-order stochastic dominance, and sets given by mean-risk problems. The last mentioned instance means that the constraint set corresponds to solutions which guarantee acceptable values of both criteria. To obtain relevant assertions, we employ the stability results given by the Wasserstein metric, based on the <span>\\\\( {{\\\\mathcal {L}}}_{1} \\\\)</span> norm. We mainly focus on the case in which a solution has to be obtained on the basis of the data and of investigating a relationship between the original problem and its empirical version.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01380-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01380-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stochastic optimization problems with nonlinear dependence on a probability measure via the Wasserstein metric
Nonlinear dependence on a probability measure has recently been encountered with increasing intensity in stochastic optimization. This type of dependence corresponds to many situations in applications; it can appear in problems static (one-stage), dynamic with finite (multi-stage) or infinite horizon, and single- and multi-objective ones. Moreover, the nonlinear dependence can appear not only in the objective functions but also in the constraint sets. In this paper, we will consider static one-objective problems in which the nonlinear dependence appears in the objective function and may also appear in the constraint sets. In detail, we consider “deterministic” constraint sets, whose dependence on the probability measure is nonlinear, constraint sets determined by second-order stochastic dominance, and sets given by mean-risk problems. The last mentioned instance means that the constraint set corresponds to solutions which guarantee acceptable values of both criteria. To obtain relevant assertions, we employ the stability results given by the Wasserstein metric, based on the \( {{\mathcal {L}}}_{1} \) norm. We mainly focus on the case in which a solution has to be obtained on the basis of the data and of investigating a relationship between the original problem and its empirical version.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.