基于深度学习的金属有机框架(MOFs)推荐系统

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-06-10 DOI:10.1039/D4DD00116H
Xiaoqi Zhang, Kevin Maik Jablonka and Berend Smit
{"title":"基于深度学习的金属有机框架(MOFs)推荐系统","authors":"Xiaoqi Zhang, Kevin Maik Jablonka and Berend Smit","doi":"10.1039/D4DD00116H","DOIUrl":null,"url":null,"abstract":"<p >This work presents a recommendation system for metal–organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation. Ranging from methane storage and carbon capture to quantum properties, this study illustrates the system's adaptability to various applications.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1410-1420"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00116h?page=search","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based recommendation system for metal–organic frameworks (MOFs)†\",\"authors\":\"Xiaoqi Zhang, Kevin Maik Jablonka and Berend Smit\",\"doi\":\"10.1039/D4DD00116H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work presents a recommendation system for metal–organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation. Ranging from methane storage and carbon capture to quantum properties, this study illustrates the system's adaptability to various applications.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1410-1420\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00116h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00116h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00116h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究受在线内容平台的启发,提出了一种金属有机框架(MOF)推荐系统。该模型利用在文档结构化的 MOF 固有特征基础上训练的 Doc2Vec 无监督模型,将 MOF 嵌入高维化学空间,并根据用户认可的 MOF,通过相似性分析,为特定应用推荐了一批有前途的材料。这种方法大大降低了对数据库中每种材料进行详尽标注的需要,而只需选择部分材料进行深入研究。从甲烷存储和碳捕获到量子特性,这项研究说明了该系统对各种应用的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based recommendation system for metal–organic frameworks (MOFs)†

This work presents a recommendation system for metal–organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation. Ranging from methane storage and carbon capture to quantum properties, this study illustrates the system's adaptability to various applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1