Helen R. Russell, Laura A. Lopez, Steven W. Allen, George Chartas, Prakriti Pal Choudhury, Renato A. Dupke, Andrew C. Fabian, Anthony M. Flores, Kristen Garofali, Edmund Hodges-Kluck, Michael J. Koss, Lauranne Lanz, Bret D. Lehmer, Jiang-Tao Li, W. Peter Maksym, Adam B. Mantz, Michael McDonald, Eric D. Miller, Richard F. Mushotzky, Yu Qiu, Christopher S. Reynolds, Francesco Tombesi, Paolo Tozzi, Anna Trindade-Falcão, Stephen A. Walker, Ka-Wah Wong, Mihoko Yukita, Congyao Zhang
{"title":"利用先进 X 射线成像卫星 (AXIS) 高分辨率观测星系和星团的演变过程","authors":"Helen R. Russell, Laura A. Lopez, Steven W. Allen, George Chartas, Prakriti Pal Choudhury, Renato A. Dupke, Andrew C. Fabian, Anthony M. Flores, Kristen Garofali, Edmund Hodges-Kluck, Michael J. Koss, Lauranne Lanz, Bret D. Lehmer, Jiang-Tao Li, W. Peter Maksym, Adam B. Mantz, Michael McDonald, Eric D. Miller, Richard F. Mushotzky, Yu Qiu, Christopher S. Reynolds, Francesco Tombesi, Paolo Tozzi, Anna Trindade-Falcão, Stephen A. Walker, Ka-Wah Wong, Mihoko Yukita, Congyao Zhang","doi":"10.3390/universe10070273","DOIUrl":null,"url":null,"abstract":"Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks, producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down star formation and ultimately curtailing the growth of structure after the peak at redshift 2–3. To understand the complex interplay between gravity and feedback, we must resolve both the key physics within galaxies and map the impact of these processes over large scales, out into the cosmic web. The Advanced X-ray Imaging Satellite (AXIS) is a proposed X-ray probe mission for the 2030s with arcsecond spatial resolution, large effective area, and low background. AXIS will untangle the interactions of winds, radiation, jets, and supernovae with the surrounding interstellar medium across the wide range of mass scales and large volumes driving galaxy evolution and trace the establishment of feedback back to the main event at cosmic noon. This white paper is part of a series commissioned for the AXIS Probe mission concept; additional AXIS white papers can be found at the AXIS website.","PeriodicalId":48646,"journal":{"name":"Universe","volume":"34 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS)\",\"authors\":\"Helen R. Russell, Laura A. Lopez, Steven W. Allen, George Chartas, Prakriti Pal Choudhury, Renato A. Dupke, Andrew C. Fabian, Anthony M. Flores, Kristen Garofali, Edmund Hodges-Kluck, Michael J. Koss, Lauranne Lanz, Bret D. Lehmer, Jiang-Tao Li, W. Peter Maksym, Adam B. Mantz, Michael McDonald, Eric D. Miller, Richard F. Mushotzky, Yu Qiu, Christopher S. Reynolds, Francesco Tombesi, Paolo Tozzi, Anna Trindade-Falcão, Stephen A. Walker, Ka-Wah Wong, Mihoko Yukita, Congyao Zhang\",\"doi\":\"10.3390/universe10070273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks, producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down star formation and ultimately curtailing the growth of structure after the peak at redshift 2–3. To understand the complex interplay between gravity and feedback, we must resolve both the key physics within galaxies and map the impact of these processes over large scales, out into the cosmic web. The Advanced X-ray Imaging Satellite (AXIS) is a proposed X-ray probe mission for the 2030s with arcsecond spatial resolution, large effective area, and low background. AXIS will untangle the interactions of winds, radiation, jets, and supernovae with the surrounding interstellar medium across the wide range of mass scales and large volumes driving galaxy evolution and trace the establishment of feedback back to the main event at cosmic noon. This white paper is part of a series commissioned for the AXIS Probe mission concept; additional AXIS white papers can be found at the AXIS website.\",\"PeriodicalId\":48646,\"journal\":{\"name\":\"Universe\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/universe10070273\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10070273","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
恒星和黑洞的反馈作用加热并分散了周围的冷气体云,使气体流脱离环核和星系盘,产生了动态的星际介质。在与宇宙网接壤的大尺度上,反馈将富集的气体驱赶出星系和星系群,为星系际介质播下重元素的种子。通过这种方式,反馈通过关闭恒星形成来影响星系的演化,并最终在红移 2-3 峰值之后抑制结构的增长。为了理解引力和反馈之间复杂的相互作用,我们必须解决星系内部的关键物理问题,并绘制这些过程对大尺度宇宙网的影响图。高级 X 射线成像卫星(AXIS)是一项拟于 2030 年代执行的 X 射线探测任务,具有弧秒空间分辨率、大有效面积和低背景。AXIS 将在广泛的质量尺度和大体积范围内解开风、辐射、喷流和超新星与周围星际介质的相互作用,并追溯到宇宙正午的主要事件。本白皮书是 AXIS 探测器任务概念委托编写的系列白皮书之一;其他 AXIS 白皮书可在 AXIS 网站上查阅。
The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS)
Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks, producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down star formation and ultimately curtailing the growth of structure after the peak at redshift 2–3. To understand the complex interplay between gravity and feedback, we must resolve both the key physics within galaxies and map the impact of these processes over large scales, out into the cosmic web. The Advanced X-ray Imaging Satellite (AXIS) is a proposed X-ray probe mission for the 2030s with arcsecond spatial resolution, large effective area, and low background. AXIS will untangle the interactions of winds, radiation, jets, and supernovae with the surrounding interstellar medium across the wide range of mass scales and large volumes driving galaxy evolution and trace the establishment of feedback back to the main event at cosmic noon. This white paper is part of a series commissioned for the AXIS Probe mission concept; additional AXIS white papers can be found at the AXIS website.
UniversePhysics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍:
Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.