非晶态钴镍硼化物促进乙醇氧化与节能制氢的电催化结合

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-07-15 DOI:10.1039/d4cy00277f
{"title":"非晶态钴镍硼化物促进乙醇氧化与节能制氢的电催化结合","authors":"","doi":"10.1039/d4cy00277f","DOIUrl":null,"url":null,"abstract":"<div><p>The thermodynamically more advantageous ethanol oxidation (EOR) can replace anodic oxygen evolution (OER) in electrolysis, offering a practical way to produce energy-efficient hydrogen and simultaneously upgrade biomass. Here, we design an amorphous heterogeneous catalyst composed of boride (NiCoB) and tungstate (NiCoWO<sub>4</sub>) by a simple one-step chemical reduction method. Benefiting from the amorphous structure and interactions between multiple components, the NiCoB@NiCoWO<sub>4</sub> catalyst shows superb EOR performance. Combined with a high efficiency hydrogen evolution catalyst (Pt/C), the NiCoB@NiCoWO<sub>4</sub>-assisted EOR electrolysis achieves a 19-fold increase in the H<sub>2</sub> production rate compared to water electrolysis at 1.50 V (cell voltage). Meanwhile, the catalyst oxidizes ethanol to acetic acid at the anode as a value-added by-product, which has a high Faraday efficiency surpassing 97%. The energy efficiency of chemical hydrogen production is improved by the NiCoB@NiCoWO<sub>4</sub>-catalyzed EOR, which has a 206 mV lower input voltage than the standard OER and achieves a current density of 20 mA cm<sup>−2</sup> in a three-electrode system. The present research paves the way for designing and developing efficient transition metal boride electrocatalysts for oxidative upgrading of organic molecules as well as energy-saving H<sub>2</sub> production.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amorphous cobalt–nickel borides boost electrocatalytic ethanol oxidation coupled with energy-saving hydrogen production†\",\"authors\":\"\",\"doi\":\"10.1039/d4cy00277f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermodynamically more advantageous ethanol oxidation (EOR) can replace anodic oxygen evolution (OER) in electrolysis, offering a practical way to produce energy-efficient hydrogen and simultaneously upgrade biomass. Here, we design an amorphous heterogeneous catalyst composed of boride (NiCoB) and tungstate (NiCoWO<sub>4</sub>) by a simple one-step chemical reduction method. Benefiting from the amorphous structure and interactions between multiple components, the NiCoB@NiCoWO<sub>4</sub> catalyst shows superb EOR performance. Combined with a high efficiency hydrogen evolution catalyst (Pt/C), the NiCoB@NiCoWO<sub>4</sub>-assisted EOR electrolysis achieves a 19-fold increase in the H<sub>2</sub> production rate compared to water electrolysis at 1.50 V (cell voltage). Meanwhile, the catalyst oxidizes ethanol to acetic acid at the anode as a value-added by-product, which has a high Faraday efficiency surpassing 97%. The energy efficiency of chemical hydrogen production is improved by the NiCoB@NiCoWO<sub>4</sub>-catalyzed EOR, which has a 206 mV lower input voltage than the standard OER and achieves a current density of 20 mA cm<sup>−2</sup> in a three-electrode system. The present research paves the way for designing and developing efficient transition metal boride electrocatalysts for oxidative upgrading of organic molecules as well as energy-saving H<sub>2</sub> production.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003356\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003356","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

热力学上更具优势的乙醇氧化(EOR)可以取代电解中的阳极氧进化(OER),为生产节能氢气并同时提升生物质能提供了一种实用的方法。在此,我们通过简单的一步化学还原法设计了一种由硼化物(NiCoB)和钨酸盐(NiCoWO4)组成的非晶态异相催化剂。得益于非晶态结构和多种成分之间的相互作用,NiCoB@NiCoWO4 催化剂显示出卓越的 EOR 性能。与高效氢气进化催化剂(Pt/C)相结合,NiCoB@NiCoWO4 辅助 EOR 电解在 1.50 V(电池电压)下的 H2 产率比电解水提高了 19 倍。同时,催化剂在阳极将乙醇氧化成醋酸,作为增值副产品,其法拉第效率高达 97%。NiCoB@NiCoWO4 催化的 EOR 提高了化学制氢的能效,其输入电压比标准 OER 低 206 mV,在三电极系统中的电流密度达到 20 mA cm-2。本研究为设计和开发高效的过渡金属硼化物电催化剂用于有机分子的氧化升级以及节能型 H2 生产铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amorphous cobalt–nickel borides boost electrocatalytic ethanol oxidation coupled with energy-saving hydrogen production†

The thermodynamically more advantageous ethanol oxidation (EOR) can replace anodic oxygen evolution (OER) in electrolysis, offering a practical way to produce energy-efficient hydrogen and simultaneously upgrade biomass. Here, we design an amorphous heterogeneous catalyst composed of boride (NiCoB) and tungstate (NiCoWO4) by a simple one-step chemical reduction method. Benefiting from the amorphous structure and interactions between multiple components, the NiCoB@NiCoWO4 catalyst shows superb EOR performance. Combined with a high efficiency hydrogen evolution catalyst (Pt/C), the NiCoB@NiCoWO4-assisted EOR electrolysis achieves a 19-fold increase in the H2 production rate compared to water electrolysis at 1.50 V (cell voltage). Meanwhile, the catalyst oxidizes ethanol to acetic acid at the anode as a value-added by-product, which has a high Faraday efficiency surpassing 97%. The energy efficiency of chemical hydrogen production is improved by the NiCoB@NiCoWO4-catalyzed EOR, which has a 206 mV lower input voltage than the standard OER and achieves a current density of 20 mA cm−2 in a three-electrode system. The present research paves the way for designing and developing efficient transition metal boride electrocatalysts for oxidative upgrading of organic molecules as well as energy-saving H2 production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity† ZIF-8 pyrolized N-doped carbon-supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1