TCV 托卡马克负三角中的杂质 C 输运和等离子体旋转研究

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Plasma Physics and Controlled Fusion Pub Date : 2024-06-07 DOI:10.1088/1361-6587/ad5229
F Bagnato, B P Duval, O Sauter, S Coda, A Karpushov, A Merle, B Labit, O Fevrier, A Pau, D Mykytchuk, L Porte, J Ball
{"title":"TCV 托卡马克负三角中的杂质 C 输运和等离子体旋转研究","authors":"F Bagnato, B P Duval, O Sauter, S Coda, A Karpushov, A Merle, B Labit, O Fevrier, A Pau, D Mykytchuk, L Porte, J Ball","doi":"10.1088/1361-6587/ad5229","DOIUrl":null,"url":null,"abstract":"Carbon impurity transport is studied in the TCV tokamak using a charge exchange recombination diagnostic. TCVs flexible shaping capabilities were exploited to extend previous impurity transport studies to negative triangularity (<italic toggle=\"yes\">δ</italic> &lt; 0). A practical way of studying light impurity transport (like C, TCVs main impurity species due to graphite tiled walls) is to investigate the correlations between the impurity ion gradients that, in this study, highlighted significant differences between positive (PT) and negative <italic toggle=\"yes\">δ</italic> (NT) plasma configurations. <italic toggle=\"yes\">δ</italic> scans (<inline-formula>\n<tex-math><?CDATA $-0.6\\lt\\delta\\lt +0.6$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.6</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>δ</mml:mi><mml:mo>&lt;</mml:mo><mml:mo>+</mml:mo><mml:mn>0.6</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad5229ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) were performed in limited configurations, but displayed little correlation between C temperature, rotation and density gradients for positive <italic toggle=\"yes\">δ</italic>. This stiff response for <italic toggle=\"yes\">δ</italic> &gt; 0 changes for negative <italic toggle=\"yes\">δ</italic>, where the evolution of <inline-formula>\n<tex-math><?CDATA $\\nabla v_\\mathrm{tor}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">∇</mml:mi><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mi>tor</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad5229ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> was accompanied by variations of <inline-formula>\n<tex-math><?CDATA $\\nabla n_\\mathrm{C}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">∇</mml:mi><mml:msub><mml:mi>n</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad5229ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> over a range of negative <italic toggle=\"yes\">δ</italic>, showing that transport, in NT, is affected by velocity gradients. Similar <italic toggle=\"yes\">δ</italic> scans were performed with additional NBH (Neutral Beam Heating), with power steps ranging from 0.25 MW to 1.25 MW, highlighting increased momentum confinement in negative <italic toggle=\"yes\">δ</italic>. Finally, the evolution of intrinsic plasma toroidal rotation across linear to saturated ohmic confinement regime (LOC/SOC) transitions was explored at <italic toggle=\"yes\">δ</italic> &lt; 0, expanding previous studies performed in TCV for <inline-formula>\n<tex-math><?CDATA $\\delta \\gt $?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>δ</mml:mi><mml:mo>&gt;</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad5229ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> 0 (Bagnato <italic toggle=\"yes\">et al</italic> 2023 <italic toggle=\"yes\">Nucl. Fusion</italic>\n<bold>63</bold> 056006). Toroidal rotation reversal was not observed for <italic toggle=\"yes\">δ</italic> &lt; 0, despite clear LOC/SOC transitions, confirming that these two phenomena occur concomitantly only in a restricted number of cases and under specific conditions.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"21 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of impurity C transport and plasma rotation in negative triangularity on the TCV tokamak\",\"authors\":\"F Bagnato, B P Duval, O Sauter, S Coda, A Karpushov, A Merle, B Labit, O Fevrier, A Pau, D Mykytchuk, L Porte, J Ball\",\"doi\":\"10.1088/1361-6587/ad5229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon impurity transport is studied in the TCV tokamak using a charge exchange recombination diagnostic. TCVs flexible shaping capabilities were exploited to extend previous impurity transport studies to negative triangularity (<italic toggle=\\\"yes\\\">δ</italic> &lt; 0). A practical way of studying light impurity transport (like C, TCVs main impurity species due to graphite tiled walls) is to investigate the correlations between the impurity ion gradients that, in this study, highlighted significant differences between positive (PT) and negative <italic toggle=\\\"yes\\\">δ</italic> (NT) plasma configurations. <italic toggle=\\\"yes\\\">δ</italic> scans (<inline-formula>\\n<tex-math><?CDATA $-0.6\\\\lt\\\\delta\\\\lt +0.6$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.6</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>δ</mml:mi><mml:mo>&lt;</mml:mo><mml:mo>+</mml:mo><mml:mn>0.6</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad5229ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) were performed in limited configurations, but displayed little correlation between C temperature, rotation and density gradients for positive <italic toggle=\\\"yes\\\">δ</italic>. This stiff response for <italic toggle=\\\"yes\\\">δ</italic> &gt; 0 changes for negative <italic toggle=\\\"yes\\\">δ</italic>, where the evolution of <inline-formula>\\n<tex-math><?CDATA $\\\\nabla v_\\\\mathrm{tor}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">∇</mml:mi><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mi>tor</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad5229ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> was accompanied by variations of <inline-formula>\\n<tex-math><?CDATA $\\\\nabla n_\\\\mathrm{C}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">∇</mml:mi><mml:msub><mml:mi>n</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad5229ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> over a range of negative <italic toggle=\\\"yes\\\">δ</italic>, showing that transport, in NT, is affected by velocity gradients. Similar <italic toggle=\\\"yes\\\">δ</italic> scans were performed with additional NBH (Neutral Beam Heating), with power steps ranging from 0.25 MW to 1.25 MW, highlighting increased momentum confinement in negative <italic toggle=\\\"yes\\\">δ</italic>. Finally, the evolution of intrinsic plasma toroidal rotation across linear to saturated ohmic confinement regime (LOC/SOC) transitions was explored at <italic toggle=\\\"yes\\\">δ</italic> &lt; 0, expanding previous studies performed in TCV for <inline-formula>\\n<tex-math><?CDATA $\\\\delta \\\\gt $?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>δ</mml:mi><mml:mo>&gt;</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad5229ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> 0 (Bagnato <italic toggle=\\\"yes\\\">et al</italic> 2023 <italic toggle=\\\"yes\\\">Nucl. Fusion</italic>\\n<bold>63</bold> 056006). Toroidal rotation reversal was not observed for <italic toggle=\\\"yes\\\">δ</italic> &lt; 0, despite clear LOC/SOC transitions, confirming that these two phenomena occur concomitantly only in a restricted number of cases and under specific conditions.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad5229\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad5229","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

利用电荷交换重组诊断法研究了 TCV 托卡马克中的碳杂质传输。利用 TCV 的灵活成型能力,将以前的杂质传输研究扩展到负三角形(δ <0)。研究轻杂质传输(如 C,TCV 因石墨瓦片壁而产生的主要杂质种类)的一种实用方法是研究杂质离子梯度之间的相关性,在本研究中,正(PT)和负δ(NT)等离子体配置之间存在显著差异。在有限的配置中进行了δ扫描(-0.6<δ<+0.6),但对于正δ,C 温度、旋转和密度梯度之间几乎没有相关性。对于负δ,这种δ>0 的僵硬反应发生了变化,在负δ范围内,∇vtor 的变化伴随着∇nC 的变化,这表明在 NT 中,传输受到速度梯度的影响。通过额外的中性束加热(NBH)进行了类似的δ扫描,功率从 0.25 兆瓦到 1.25 兆瓦不等,突出显示了负δ中动量限制的增加。最后,在δ <0时,探索了从线性到饱和欧姆约束机制(LOC/SOC)转变过程中等离子体本征环形旋转的演变,扩展了先前在TCV中针对δ >0进行的研究(Bagnato等人,2023年,Nucl.)尽管有明显的 LOC/SOC 转变,但在δ < 0 时并没有观察到环形旋转反转,这证实了这两种现象只在少数情况下和特定条件下同时发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of impurity C transport and plasma rotation in negative triangularity on the TCV tokamak
Carbon impurity transport is studied in the TCV tokamak using a charge exchange recombination diagnostic. TCVs flexible shaping capabilities were exploited to extend previous impurity transport studies to negative triangularity (δ < 0). A practical way of studying light impurity transport (like C, TCVs main impurity species due to graphite tiled walls) is to investigate the correlations between the impurity ion gradients that, in this study, highlighted significant differences between positive (PT) and negative δ (NT) plasma configurations. δ scans ( 0.6<δ<+0.6 ) were performed in limited configurations, but displayed little correlation between C temperature, rotation and density gradients for positive δ. This stiff response for δ > 0 changes for negative δ, where the evolution of vtor was accompanied by variations of nC over a range of negative δ, showing that transport, in NT, is affected by velocity gradients. Similar δ scans were performed with additional NBH (Neutral Beam Heating), with power steps ranging from 0.25 MW to 1.25 MW, highlighting increased momentum confinement in negative δ. Finally, the evolution of intrinsic plasma toroidal rotation across linear to saturated ohmic confinement regime (LOC/SOC) transitions was explored at δ < 0, expanding previous studies performed in TCV for δ> 0 (Bagnato et al 2023 Nucl. Fusion 63 056006). Toroidal rotation reversal was not observed for δ < 0, despite clear LOC/SOC transitions, confirming that these two phenomena occur concomitantly only in a restricted number of cases and under specific conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
期刊最新文献
Reduced order modeling for real-time monitoring of structural displacements due to electromagnetic forces in large scale tokamaks He II line intensity measurements in the JET tokamak Sheath constraints on turbulent magnetised plasmas Vertical instability forecasting and controllability assessment of multi-device tokamak plasmas in DECAF with data-driven optimization Identifying L-H transition in HL-2A through deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1