{"title":"导电室形状对镜面陷波器中刚性气球模式稳定性的影响","authors":"Qiusun Zeng, Igor Kotelnikov","doi":"10.1088/1361-6587/ad4f10","DOIUrl":null,"url":null,"abstract":"MHD stabilization of flute and ballooning modes in an axisymmetric mirror trap is studied under the assumption of strong finite Larmor radius effect that suppresses all perturbations with azimuthal numbers <inline-formula>\n<tex-math><?CDATA $m\\unicode{x2A7E}2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>m</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and makes the <italic toggle=\"yes\">m</italic> = 1 mode ‘rigid’. The rigid mode can be effectively suppressed using perfectly conducting lateral wall without any additional means of stabilization or in combination with end MHD anchors. Numerical calculations were carried out for an anisotropic plasma produced in the course of neutral beam injection into the minimum of the magnetic field at the right angle to the trap axis. The stabilizing effect of the conducting shell made of a straightened cylinder is compared with a proportional chamber, which, on an enlarged scale, repeats the shape of the plasma column. It is confirmed that for convincing wall stabilization of the rigid modes, the plasma beta (<italic toggle=\"yes\">β</italic>, the ratio of the plasma pressure to the magnetic field pressure) must exceed some critical value <inline-formula>\n<tex-math><?CDATA $\\beta_{\\text{cr}2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. When conducting lateral wall is combined with conducting end plates imitating MHD end anchors, there are two critical betas and, respectively, two stability zones <inline-formula>\n<tex-math><?CDATA $\\beta \\lt \\beta_{\\text{cr}1}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>β</mml:mi><mml:mo><</mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $\\beta \\gt \\beta_{\\text{cr}2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>β</mml:mi><mml:mo>></mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> that can merge, making the entire range <inline-formula>\n<tex-math><?CDATA $0 \\lt \\beta \\lt 1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mi>β</mml:mi><mml:mo><</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of betas allowable for stable plasma confinement. The dependence of the critical betas on the plasma anisotropy, mirror ratio, width of the vacuum gap between the plasma column and the lateral wall, radial pressure profile and the axial magnetic field profile is examined.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"52 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the shape of a conducting chamber on the stability of rigid ballooning modes in a mirror trap\",\"authors\":\"Qiusun Zeng, Igor Kotelnikov\",\"doi\":\"10.1088/1361-6587/ad4f10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MHD stabilization of flute and ballooning modes in an axisymmetric mirror trap is studied under the assumption of strong finite Larmor radius effect that suppresses all perturbations with azimuthal numbers <inline-formula>\\n<tex-math><?CDATA $m\\\\unicode{x2A7E}2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and makes the <italic toggle=\\\"yes\\\">m</italic> = 1 mode ‘rigid’. The rigid mode can be effectively suppressed using perfectly conducting lateral wall without any additional means of stabilization or in combination with end MHD anchors. Numerical calculations were carried out for an anisotropic plasma produced in the course of neutral beam injection into the minimum of the magnetic field at the right angle to the trap axis. The stabilizing effect of the conducting shell made of a straightened cylinder is compared with a proportional chamber, which, on an enlarged scale, repeats the shape of the plasma column. It is confirmed that for convincing wall stabilization of the rigid modes, the plasma beta (<italic toggle=\\\"yes\\\">β</italic>, the ratio of the plasma pressure to the magnetic field pressure) must exceed some critical value <inline-formula>\\n<tex-math><?CDATA $\\\\beta_{\\\\text{cr}2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. When conducting lateral wall is combined with conducting end plates imitating MHD end anchors, there are two critical betas and, respectively, two stability zones <inline-formula>\\n<tex-math><?CDATA $\\\\beta \\\\lt \\\\beta_{\\\\text{cr}1}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>β</mml:mi><mml:mo><</mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $\\\\beta \\\\gt \\\\beta_{\\\\text{cr}2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>β</mml:mi><mml:mo>></mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> that can merge, making the entire range <inline-formula>\\n<tex-math><?CDATA $0 \\\\lt \\\\beta \\\\lt 1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mi>β</mml:mi><mml:mo><</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> of betas allowable for stable plasma confinement. The dependence of the critical betas on the plasma anisotropy, mirror ratio, width of the vacuum gap between the plasma column and the lateral wall, radial pressure profile and the axial magnetic field profile is examined.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad4f10\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad4f10","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Influence of the shape of a conducting chamber on the stability of rigid ballooning modes in a mirror trap
MHD stabilization of flute and ballooning modes in an axisymmetric mirror trap is studied under the assumption of strong finite Larmor radius effect that suppresses all perturbations with azimuthal numbers m⩾2 and makes the m = 1 mode ‘rigid’. The rigid mode can be effectively suppressed using perfectly conducting lateral wall without any additional means of stabilization or in combination with end MHD anchors. Numerical calculations were carried out for an anisotropic plasma produced in the course of neutral beam injection into the minimum of the magnetic field at the right angle to the trap axis. The stabilizing effect of the conducting shell made of a straightened cylinder is compared with a proportional chamber, which, on an enlarged scale, repeats the shape of the plasma column. It is confirmed that for convincing wall stabilization of the rigid modes, the plasma beta (β, the ratio of the plasma pressure to the magnetic field pressure) must exceed some critical value βcr2. When conducting lateral wall is combined with conducting end plates imitating MHD end anchors, there are two critical betas and, respectively, two stability zones β<βcr1 and β>βcr2 that can merge, making the entire range 0<β<1 of betas allowable for stable plasma confinement. The dependence of the critical betas on the plasma anisotropy, mirror ratio, width of the vacuum gap between the plasma column and the lateral wall, radial pressure profile and the axial magnetic field profile is examined.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.