通过机器学习预测公司债券的流动性

IF 3.4 3区 经济学 Q1 BUSINESS, FINANCE Financial Analysts Journal Pub Date : 2024-06-24 DOI:10.1080/0015198x.2024.2350952
Axel Cabrol, Wolfgang Drobetz, Tizian Otto, Tatjana Puhan
{"title":"通过机器学习预测公司债券的流动性","authors":"Axel Cabrol, Wolfgang Drobetz, Tizian Otto, Tatjana Puhan","doi":"10.1080/0015198x.2024.2350952","DOIUrl":null,"url":null,"abstract":"This paper tests the predictive performance of machine learning methods in estimating the illiquidity of US corporate bonds. Machine learning techniques outperform the historical illiquidity-based ...","PeriodicalId":48062,"journal":{"name":"Financial Analysts Journal","volume":"49 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Corporate Bond Illiquidity via Machine Learning\",\"authors\":\"Axel Cabrol, Wolfgang Drobetz, Tizian Otto, Tatjana Puhan\",\"doi\":\"10.1080/0015198x.2024.2350952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tests the predictive performance of machine learning methods in estimating the illiquidity of US corporate bonds. Machine learning techniques outperform the historical illiquidity-based ...\",\"PeriodicalId\":48062,\"journal\":{\"name\":\"Financial Analysts Journal\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Analysts Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0015198x.2024.2350952\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Analysts Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0015198x.2024.2350952","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文测试了机器学习方法在估计美国公司债券流动性不足方面的预测性能。机器学习技术的表现优于基于流动性的历史预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Corporate Bond Illiquidity via Machine Learning
This paper tests the predictive performance of machine learning methods in estimating the illiquidity of US corporate bonds. Machine learning techniques outperform the historical illiquidity-based ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Financial Analysts Journal
Financial Analysts Journal BUSINESS, FINANCE-
CiteScore
5.40
自引率
7.10%
发文量
31
期刊介绍: The Financial Analysts Journal aims to be the leading practitioner journal in the investment management community by advancing the knowledge and understanding of the practice of investment management through the publication of rigorous, peer-reviewed, practitioner-relevant research from leading academics and practitioners.
期刊最新文献
Choices Matter When Training Machine Learning Models for Return Prediction The Importance of Joining Lifecycle Models with Mean-Variance Optimization Transaction Costs and Capacity of Systematic Corporate Bond Strategies Predicting Corporate Bond Illiquidity via Machine Learning Nonlinear Factor Returns in the US Equity Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1