Axel Cabrol, Wolfgang Drobetz, Tizian Otto, Tatjana Puhan
{"title":"通过机器学习预测公司债券的流动性","authors":"Axel Cabrol, Wolfgang Drobetz, Tizian Otto, Tatjana Puhan","doi":"10.1080/0015198x.2024.2350952","DOIUrl":null,"url":null,"abstract":"This paper tests the predictive performance of machine learning methods in estimating the illiquidity of US corporate bonds. Machine learning techniques outperform the historical illiquidity-based ...","PeriodicalId":48062,"journal":{"name":"Financial Analysts Journal","volume":"49 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Corporate Bond Illiquidity via Machine Learning\",\"authors\":\"Axel Cabrol, Wolfgang Drobetz, Tizian Otto, Tatjana Puhan\",\"doi\":\"10.1080/0015198x.2024.2350952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tests the predictive performance of machine learning methods in estimating the illiquidity of US corporate bonds. Machine learning techniques outperform the historical illiquidity-based ...\",\"PeriodicalId\":48062,\"journal\":{\"name\":\"Financial Analysts Journal\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Analysts Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0015198x.2024.2350952\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Analysts Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0015198x.2024.2350952","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Predicting Corporate Bond Illiquidity via Machine Learning
This paper tests the predictive performance of machine learning methods in estimating the illiquidity of US corporate bonds. Machine learning techniques outperform the historical illiquidity-based ...
期刊介绍:
The Financial Analysts Journal aims to be the leading practitioner journal in the investment management community by advancing the knowledge and understanding of the practice of investment management through the publication of rigorous, peer-reviewed, practitioner-relevant research from leading academics and practitioners.