对异质表面上液滴行为的研究:理论与实验方法

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Superhard Materials Pub Date : 2024-06-17 DOI:10.3103/S1063457624020023
A. A. Efremov, O. G. Gontar, O. B. Loginova, H. D. Ilnytska, S. P. Staryk
{"title":"对异质表面上液滴行为的研究:理论与实验方法","authors":"A. A. Efremov,&nbsp;O. G. Gontar,&nbsp;O. B. Loginova,&nbsp;H. D. Ilnytska,&nbsp;S. P. Staryk","doi":"10.3103/S1063457624020023","DOIUrl":null,"url":null,"abstract":"<p>We analyzed the results of the sessile drop method to examine experimental data regarding the behavior of liquid droplets on heterogeneous surfaces under the action of a magnetic field, their movement along the surface due to horizontal external forces, and in cases of detachment and dropping of the droplet onto a solid surface, compared to the outcomes of the simulation results obtained using the lattice Boltzmann method within a two-dimensional model. In most cases, there was a satisfactory qualitative agreement observed between the calculated and experimental data. This demonstrates the suitability and effectiveness of the proposed theoretical approach in exploring a broad spectrum of phenomena associated with the contact interaction between liquid and solid heterogeneous phases at both the meso- and macroscopic levels.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 2","pages":"129 - 142"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation into the Behavior of Liquid Drops on Heterogeneous Surfaces: A Theoretical and Experimental Approach\",\"authors\":\"A. A. Efremov,&nbsp;O. G. Gontar,&nbsp;O. B. Loginova,&nbsp;H. D. Ilnytska,&nbsp;S. P. Staryk\",\"doi\":\"10.3103/S1063457624020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyzed the results of the sessile drop method to examine experimental data regarding the behavior of liquid droplets on heterogeneous surfaces under the action of a magnetic field, their movement along the surface due to horizontal external forces, and in cases of detachment and dropping of the droplet onto a solid surface, compared to the outcomes of the simulation results obtained using the lattice Boltzmann method within a two-dimensional model. In most cases, there was a satisfactory qualitative agreement observed between the calculated and experimental data. This demonstrates the suitability and effectiveness of the proposed theoretical approach in exploring a broad spectrum of phenomena associated with the contact interaction between liquid and solid heterogeneous phases at both the meso- and macroscopic levels.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 2\",\"pages\":\"129 - 142\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624020023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624020023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们分析了无柄液滴法的结果,以研究在磁场作用下异质表面上液滴的行为、液滴在水平外力作用下沿表面移动的情况以及液滴脱离和滴落到固体表面的情况的实验数据,并与在二维模型中使用晶格玻尔兹曼法获得的模拟结果进行了比较。在大多数情况下,计算数据和实验数据在质量上的一致性令人满意。这表明,所提出的理论方法适用于在中观和宏观层面探索与液体和固体异质相接触相互作用相关的各种现象,而且非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Investigation into the Behavior of Liquid Drops on Heterogeneous Surfaces: A Theoretical and Experimental Approach

We analyzed the results of the sessile drop method to examine experimental data regarding the behavior of liquid droplets on heterogeneous surfaces under the action of a magnetic field, their movement along the surface due to horizontal external forces, and in cases of detachment and dropping of the droplet onto a solid surface, compared to the outcomes of the simulation results obtained using the lattice Boltzmann method within a two-dimensional model. In most cases, there was a satisfactory qualitative agreement observed between the calculated and experimental data. This demonstrates the suitability and effectiveness of the proposed theoretical approach in exploring a broad spectrum of phenomena associated with the contact interaction between liquid and solid heterogeneous phases at both the meso- and macroscopic levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superhard Materials
Journal of Superhard Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
66.70%
发文量
26
审稿时长
2 months
期刊介绍: Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.
期刊最新文献
Melting Temperatures of (Super)Hard Cubic Boron Pnictides Modeling the Densification of Boron Carbide Based Ceramic Materials under Flash Pressure Sintering Electrodynamic Properties of AlN–C and AlN–C–Mo Composites Produced by Pressureless Sintering Original Orthorhombic Tetrahedral-Trigonal Hybrid Allotropes Cn (n = 8, 10, 12, 14) with Ethene–Like and Propadiene–Like Units: Crystal Engineering and Quantum Mechanical Calculations Effect of Sintering Parameters and Liquid Phase Content on the Properties of Fe-Rich Based Impregnated Diamond Bit Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1