将指纹法应用于 III 期临床试验数据

Lars Edenbrandt
{"title":"将指纹法应用于 III 期临床试验数据","authors":"Lars Edenbrandt","doi":"10.1101/2024.06.25.24309472","DOIUrl":null,"url":null,"abstract":"Researchers in the RECOMIA network have been developing AI tools for the automated analysis of PET/CT studies in lymphoma patients. To enhance these AI tools, the CALGB 50303 dataset from The Cancer Imaging Archive was identified for inclusion in their project. Ensuring the quality of databases used for AI training is crucial, and one quality control (QC) measure involves the AI-based Fingerprint method to verify correct de-identification of clinical trial images. The study applied the Fingerprint method to PET/CT studies from 130 patients, successfully detecting an incorrectly de-identified study and identifying its correct trial identification number. This demonstrates the feasibility of using AI for QC in clinical trials. AI-based methods offer significant opportunities for enhancing QC, providing automated, consistent, and objective analyses that reduce the workload on human annotators. Integrating AI into QC processes promises to improve accuracy, consistency, and efficiency, thereby enhancing data integrity and the reliability of clinical trial results. This study underscores the importance of further developing AI-based QC methods in clinical trials.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fingerprint method applied to data from a phase III clinical trial\",\"authors\":\"Lars Edenbrandt\",\"doi\":\"10.1101/2024.06.25.24309472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers in the RECOMIA network have been developing AI tools for the automated analysis of PET/CT studies in lymphoma patients. To enhance these AI tools, the CALGB 50303 dataset from The Cancer Imaging Archive was identified for inclusion in their project. Ensuring the quality of databases used for AI training is crucial, and one quality control (QC) measure involves the AI-based Fingerprint method to verify correct de-identification of clinical trial images. The study applied the Fingerprint method to PET/CT studies from 130 patients, successfully detecting an incorrectly de-identified study and identifying its correct trial identification number. This demonstrates the feasibility of using AI for QC in clinical trials. AI-based methods offer significant opportunities for enhancing QC, providing automated, consistent, and objective analyses that reduce the workload on human annotators. Integrating AI into QC processes promises to improve accuracy, consistency, and efficiency, thereby enhancing data integrity and the reliability of clinical trial results. This study underscores the importance of further developing AI-based QC methods in clinical trials.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.06.25.24309472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.25.24309472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

RECOMIA 网络的研究人员一直在开发用于自动分析淋巴瘤患者 PET/CT 研究的人工智能工具。为了增强这些人工智能工具,癌症成像档案馆的 CALGB 50303 数据集被确定纳入他们的项目。确保用于人工智能训练的数据库的质量至关重要,其中一项质量控制(QC)措施涉及基于人工智能的指纹方法,以验证临床试验图像的去标识化是否正确。该研究将指纹法应用于 130 名患者的 PET/CT 研究,成功检测出了一个错误的去标识化研究,并确定了其正确的试验标识号。这证明了将人工智能用于临床试验质量控制的可行性。基于人工智能的方法为加强质量控制提供了重要机会,可提供自动、一致和客观的分析,减少人工标注者的工作量。将人工智能融入质量控制流程有望提高准确性、一致性和效率,从而增强数据完整性和临床试验结果的可靠性。这项研究强调了在临床试验中进一步开发基于人工智能的质量控制方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fingerprint method applied to data from a phase III clinical trial
Researchers in the RECOMIA network have been developing AI tools for the automated analysis of PET/CT studies in lymphoma patients. To enhance these AI tools, the CALGB 50303 dataset from The Cancer Imaging Archive was identified for inclusion in their project. Ensuring the quality of databases used for AI training is crucial, and one quality control (QC) measure involves the AI-based Fingerprint method to verify correct de-identification of clinical trial images. The study applied the Fingerprint method to PET/CT studies from 130 patients, successfully detecting an incorrectly de-identified study and identifying its correct trial identification number. This demonstrates the feasibility of using AI for QC in clinical trials. AI-based methods offer significant opportunities for enhancing QC, providing automated, consistent, and objective analyses that reduce the workload on human annotators. Integrating AI into QC processes promises to improve accuracy, consistency, and efficiency, thereby enhancing data integrity and the reliability of clinical trial results. This study underscores the importance of further developing AI-based QC methods in clinical trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1