7 特斯拉超高分辨率磁共振成像脑放射学特征的再现性:不同分割技术的比较

Julian Klinger, Doris Leithner, Sungmin Woo, Michael Weber, Hebert Alberto Vargas, Marius E. Mayerhoefer
{"title":"7 特斯拉超高分辨率磁共振成像脑放射学特征的再现性:不同分割技术的比较","authors":"Julian Klinger, Doris Leithner, Sungmin Woo, Michael Weber, Hebert Alberto Vargas, Marius E. Mayerhoefer","doi":"10.1101/2024.06.24.24308597","DOIUrl":null,"url":null,"abstract":"Objectives: To determine the impact of segmentation techniques on radiomic features extracted from ultrahigh-field (UHF) MRI of the brain. Materials and Methods: Twenty-one 7T MRI scans of the brain, including a 3D magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted sequence with an isotropic 0.63 mm3 voxel size, were analyzed. Radiomic features (histogram, texture, and shape; total n=101) from six brain regions -cerebral gray and white matter, basal ganglia, ventricles, cerebellum, and brainstem- were extracted from segmentation masks constructed with four different techniques: the iGT (reference standard), based on a custom pipeline that combined automatic segmentation tools and expert reader correction; the deep-learning algorithm Cerebrum-7T; the Freesurfer-v7 software suite; and the Nighres algorithm. Principal components (PCs) were calculated for histogram and texture features. To test the reproducibility of radiomic features, intraclass correlation coefficients (ICC) were used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. Results: For histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 0.42, and 0.11 for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for the white matter; 0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 0.78, 0.21, and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 0.91, 0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 for the cerebellum; and 0.72, 0.39, and 0.46 for the brainstem. For shape features, median ICCs for Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 for the gray matter; 0.89, 0.90, and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white matter; 0.91, 0.91, and 0.36 for the ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, and 0.15 for the brainstem. Conclusions: Radiomic features in UHF MRI of the brain show substantial variability depending on the segmentation algorithm. The deep learning algorithm Cerebrum-7T enabled the highest reproducibility. Dedicated software tools for UHF MRI may be needed to achieve more stable results.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of radiomic features of the brain on ultrahigh-resolution MRI at 7 Tesla: a comparison of different segmentation techniques\",\"authors\":\"Julian Klinger, Doris Leithner, Sungmin Woo, Michael Weber, Hebert Alberto Vargas, Marius E. Mayerhoefer\",\"doi\":\"10.1101/2024.06.24.24308597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: To determine the impact of segmentation techniques on radiomic features extracted from ultrahigh-field (UHF) MRI of the brain. Materials and Methods: Twenty-one 7T MRI scans of the brain, including a 3D magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted sequence with an isotropic 0.63 mm3 voxel size, were analyzed. Radiomic features (histogram, texture, and shape; total n=101) from six brain regions -cerebral gray and white matter, basal ganglia, ventricles, cerebellum, and brainstem- were extracted from segmentation masks constructed with four different techniques: the iGT (reference standard), based on a custom pipeline that combined automatic segmentation tools and expert reader correction; the deep-learning algorithm Cerebrum-7T; the Freesurfer-v7 software suite; and the Nighres algorithm. Principal components (PCs) were calculated for histogram and texture features. To test the reproducibility of radiomic features, intraclass correlation coefficients (ICC) were used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. Results: For histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 0.42, and 0.11 for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for the white matter; 0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 0.78, 0.21, and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 0.91, 0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 for the cerebellum; and 0.72, 0.39, and 0.46 for the brainstem. For shape features, median ICCs for Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 for the gray matter; 0.89, 0.90, and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white matter; 0.91, 0.91, and 0.36 for the ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, and 0.15 for the brainstem. Conclusions: Radiomic features in UHF MRI of the brain show substantial variability depending on the segmentation algorithm. The deep learning algorithm Cerebrum-7T enabled the highest reproducibility. Dedicated software tools for UHF MRI may be needed to achieve more stable results.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.06.24.24308597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.24.24308597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的确定分割技术对从大脑超高场(UHF)磁共振成像中提取的放射学特征的影响。材料与方法:对 21 个 7T 脑部 MRI 扫描进行分析,包括三维磁化预处理双快速采集梯度回波(MP2RAGE)T1 加权序列,各向同性 0.63 mm3 体素大小。从四种不同技术构建的分割掩膜中提取了六个脑区(大脑灰质和白质、基底节、脑室、小脑和脑干)的放射学特征(直方图、纹理和形状;总人数=101):iGT(参考标准),基于结合自动分割工具和专家校正的定制管道;深度学习算法 Cerebrum-7T;Freesurfer-v7 软件套件;以及 Nighres 算法。计算了直方图和纹理特征的主成分(PC)。为了测试放射学特征的可重复性,使用类内相关系数(ICC)将 Cerebrum-7、Freesurfer-v7 和 Nighres 分别与 iGT 进行比较。结果显示对于直方图 PC,Cerebrum-7T、Freesurfer-v7 和 Nighres 的中位 ICC 分别为:灰质 0.99、0.42 和 0.11;基底节 0.84、0.25 和 0.43;基底节 0.白质分别为 0.89、0.063 和 0.036;脑室分别为 0.84、0.21 和 0.33;小脑分别为 0.94、0.64 和 0.93;脑干分别为 0.78、0.21 和 0.53。对于纹理 PC,Cerebrum-7T、Freesurfer-v7 和 Nighres 的中位 ICCs 分别为:灰质 0.95、0.21 和 0.15;基底节 0.70、0.36 和 0.023;脑室 0.91、0.25 和 0.93;小脑 0.94、0.64 和 0.93;脑干 0.78、0.21 和 0.53。91、0.25 和 0.023;脑室为 0.80、0.75 和 0.59;小脑为 0.95、0.43 和 0.86;脑干为 0.72、0.39 和 0.46。在形状特征方面,Cerebrum-7T、FreeSurfer-v7 和 Nighres 的中位 ICC 分别为:灰质 0.99、0.91 和 0.36;基底节 0.89、0.90 和 0.13;脑干 0.98、0.91 和 0.46;脑室 0.95、0.43 和 0.86;小脑 0.72、0.39 和 0.46。98、0.91 和 0.027;脑室为 0.91、0.91 和 0.36;小脑为 0.80、0.68 和 0.47;脑干为 0.79、0.17 和 0.15。结论大脑超高频磁共振成像的放射学特征因分割算法的不同而存在很大差异。深度学习算法 Cerebrum-7T 的可重复性最高。要获得更稳定的结果,可能需要专门的超高频磁共振成像软件工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reproducibility of radiomic features of the brain on ultrahigh-resolution MRI at 7 Tesla: a comparison of different segmentation techniques
Objectives: To determine the impact of segmentation techniques on radiomic features extracted from ultrahigh-field (UHF) MRI of the brain. Materials and Methods: Twenty-one 7T MRI scans of the brain, including a 3D magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) T1-weighted sequence with an isotropic 0.63 mm3 voxel size, were analyzed. Radiomic features (histogram, texture, and shape; total n=101) from six brain regions -cerebral gray and white matter, basal ganglia, ventricles, cerebellum, and brainstem- were extracted from segmentation masks constructed with four different techniques: the iGT (reference standard), based on a custom pipeline that combined automatic segmentation tools and expert reader correction; the deep-learning algorithm Cerebrum-7T; the Freesurfer-v7 software suite; and the Nighres algorithm. Principal components (PCs) were calculated for histogram and texture features. To test the reproducibility of radiomic features, intraclass correlation coefficients (ICC) were used to compare Cerebrum-7, Freesurfer-v7, and Nighres to the iGT, respectively. Results: For histogram PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.99, 0.42, and 0.11 for the gray matter; 0.84, 0.25, and 0.43 for the basal ganglia; 0.89, 0.063, and 0.036 for the white matter; 0.84, 0.21, and 0.33 for the ventricles; 0.94, 0.64, and 0.93 for the cerebellum; and 0.78, 0.21, and 0.53 for the brainstem. For texture PCs, median ICCs for Cerebrum-7T, Freesurfer-v7, and Nighres were 0.95, 0.21, and 0.15 for the gray matter; 0.70, 0.36, and 0.023 for the basal ganglia; 0.91, 0.25, and 0.023 for the white matter; 0.80, 0.75, and 0.59 for the ventricles; 0.95, 0.43, and 0.86 for the cerebellum; and 0.72, 0.39, and 0.46 for the brainstem. For shape features, median ICCs for Cerebrum-7T, FreeSurfer-v7, and Nighres were 0.99, 0.91, and 0.36 for the gray matter; 0.89, 0.90, and 0.13 for the basal ganglia; 0.98, 0.91, and 0.027 for the white matter; 0.91, 0.91, and 0.36 for the ventricles; 0.80, 0.68, and 0.47 for the cerebellum; and 0.79, 0.17, and 0.15 for the brainstem. Conclusions: Radiomic features in UHF MRI of the brain show substantial variability depending on the segmentation algorithm. The deep learning algorithm Cerebrum-7T enabled the highest reproducibility. Dedicated software tools for UHF MRI may be needed to achieve more stable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1