雾预报是否需要气溶胶化学的更多物理表示?

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-06-25 DOI:10.1002/qj.4729
Moumita Bhowmik, Anupam Hazra, Sachin D. Ghude, Sandeep Wagh, Rituparna Chowdhury, Avinash N. Parde, Gaurav Govardhan, Ismail Gultepe, M. Rajeevan
{"title":"雾预报是否需要气溶胶化学的更多物理表示?","authors":"Moumita Bhowmik, Anupam Hazra, Sachin D. Ghude, Sandeep Wagh, Rituparna Chowdhury, Avinash N. Parde, Gaurav Govardhan, Ismail Gultepe, M. Rajeevan","doi":"10.1002/qj.4729","DOIUrl":null,"url":null,"abstract":"With the changing climate, the study of fog formation is essential due to the impact of the complexity of natural and anthropogenic aerosols. The evolution of the droplet size distribution in the presence of different aerosol species remains poorly understood. To make progress towards reducing the uncertainty of fog forecasts, the Eulerian–Lagrangian particle‐based small‐scale model for the diffusional growth of droplets is used to better understand the droplet activation and growth. The small‐scale model simulations are performed using observed data from the Winter Fog Experiment study over Indira Gandhi International Airport, New Delhi. The microphysical properties, such as droplet number concentrations (Nd) and liquid water content (LWC), important for fog simulation, are evaluated to gain more insights. The small‐scale simulations have shown the droplet microphysical properties at different evolutionary stages. The Nd and effective radius change with variations in LWC for different aerosol chemistries (i.e., organics, mix, and inorganic). The calculated visibility at small scale is also shown with the variation of Nd and LWC. This study compared visibility from an existing parametrization with parcel–direct numerical simulation calculation. The hygroscopicity , which is highly related to the activation of aerosols to condensation nuclei, is taken into account to demonstrate the contribution of aerosol chemistry to fog droplet formation. The results highlight that hygroscopicity is essential in the numerical model for fog and visibility prediction as the microphysical properties of fog are regulated by aerosol species.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is a more physical representation of aerosol chemistry needed for fog forecasting?\",\"authors\":\"Moumita Bhowmik, Anupam Hazra, Sachin D. Ghude, Sandeep Wagh, Rituparna Chowdhury, Avinash N. Parde, Gaurav Govardhan, Ismail Gultepe, M. Rajeevan\",\"doi\":\"10.1002/qj.4729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the changing climate, the study of fog formation is essential due to the impact of the complexity of natural and anthropogenic aerosols. The evolution of the droplet size distribution in the presence of different aerosol species remains poorly understood. To make progress towards reducing the uncertainty of fog forecasts, the Eulerian–Lagrangian particle‐based small‐scale model for the diffusional growth of droplets is used to better understand the droplet activation and growth. The small‐scale model simulations are performed using observed data from the Winter Fog Experiment study over Indira Gandhi International Airport, New Delhi. The microphysical properties, such as droplet number concentrations (Nd) and liquid water content (LWC), important for fog simulation, are evaluated to gain more insights. The small‐scale simulations have shown the droplet microphysical properties at different evolutionary stages. The Nd and effective radius change with variations in LWC for different aerosol chemistries (i.e., organics, mix, and inorganic). The calculated visibility at small scale is also shown with the variation of Nd and LWC. This study compared visibility from an existing parametrization with parcel–direct numerical simulation calculation. The hygroscopicity , which is highly related to the activation of aerosols to condensation nuclei, is taken into account to demonstrate the contribution of aerosol chemistry to fog droplet formation. The results highlight that hygroscopicity is essential in the numerical model for fog and visibility prediction as the microphysical properties of fog are regulated by aerosol species.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4729\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4729","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着气候的不断变化,由于受到复杂的天然和人为气溶胶的影响,研究雾的形成至关重要。人们对不同气溶胶存在时雾滴粒径分布的演变仍然知之甚少。为了在减少雾预报的不确定性方面取得进展,使用了基于欧拉-拉格朗日粒子的小尺度雾滴扩散生长模型,以更好地理解雾滴的激活和生长。小尺度模型模拟使用了新德里英迪拉-甘地国际机场冬季大雾实验研究的观测数据。对雾气模拟中重要的微物理特性,如液滴数量浓度(Nd)和液态水含量(LWC)进行了评估,以获得更多见解。小尺度模拟显示了液滴在不同演化阶段的微物理性质。对于不同的气溶胶化学成分(即有机、混合和无机),Nd 和有效半径随着 LWC 的变化而变化。计算得出的小尺度能见度也随 Nd 和 LWC 的变化而变化。这项研究比较了现有参数和包裹直接数值模拟计算得出的能见度。吸湿性与气溶胶活化为凝结核高度相关,本研究考虑了吸湿性,以证明气溶胶化学对雾滴形成的贡献。结果表明,吸湿性在雾和能见度预测的数值模型中至关重要,因为雾的微物理特性受气溶胶种类的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is a more physical representation of aerosol chemistry needed for fog forecasting?
With the changing climate, the study of fog formation is essential due to the impact of the complexity of natural and anthropogenic aerosols. The evolution of the droplet size distribution in the presence of different aerosol species remains poorly understood. To make progress towards reducing the uncertainty of fog forecasts, the Eulerian–Lagrangian particle‐based small‐scale model for the diffusional growth of droplets is used to better understand the droplet activation and growth. The small‐scale model simulations are performed using observed data from the Winter Fog Experiment study over Indira Gandhi International Airport, New Delhi. The microphysical properties, such as droplet number concentrations (Nd) and liquid water content (LWC), important for fog simulation, are evaluated to gain more insights. The small‐scale simulations have shown the droplet microphysical properties at different evolutionary stages. The Nd and effective radius change with variations in LWC for different aerosol chemistries (i.e., organics, mix, and inorganic). The calculated visibility at small scale is also shown with the variation of Nd and LWC. This study compared visibility from an existing parametrization with parcel–direct numerical simulation calculation. The hygroscopicity , which is highly related to the activation of aerosols to condensation nuclei, is taken into account to demonstrate the contribution of aerosol chemistry to fog droplet formation. The results highlight that hygroscopicity is essential in the numerical model for fog and visibility prediction as the microphysical properties of fog are regulated by aerosol species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1