{"title":"美国毗连地区跨区域水文气候因果关系的时变性和周期性","authors":"Xueli Yang, Zhi‐Hua Wang, Qi Li, Ying‐Cheng Lai","doi":"10.1002/qj.4800","DOIUrl":null,"url":null,"abstract":"Identifying and understanding various causal relations are fundamental to climate dynamics for improving the predictive capacity of Earth system modeling. In particular, causality in Earth systems has manifest temporal periodicities, like physical climate variabilities. To unravel the characteristic frequency of causality in climate dynamics, we develop a data‐analytic framework based on a combination of causality detection and Hilbert spectral analysis, using a long‐term temperature and precipitation dataset in the contiguous United States. Using the Huang–Hilbert transform, we identify the intrinsic frequencies of cross‐regional causality for precipitation and temperature, ranging from interannual to interdecadal time scales. In addition, we analyze the spectra of the physical climate variabilities, including El Niño‐Southern Oscillation and Pacific Decadal Oscillation. It is found that the intrinsic causal frequencies are positively associated with the physics of the oscillations in the global climate system. The proposed methodology provides fresh insights into the causal connectivity in Earth's hydroclimatic system and its underlying mechanism as regulated by the characteristic low‐frequency variability associated with various climatic dynamics.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time variability and periodicities of cross‐regional hydroclimatic causation in the contiguous United States\",\"authors\":\"Xueli Yang, Zhi‐Hua Wang, Qi Li, Ying‐Cheng Lai\",\"doi\":\"10.1002/qj.4800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying and understanding various causal relations are fundamental to climate dynamics for improving the predictive capacity of Earth system modeling. In particular, causality in Earth systems has manifest temporal periodicities, like physical climate variabilities. To unravel the characteristic frequency of causality in climate dynamics, we develop a data‐analytic framework based on a combination of causality detection and Hilbert spectral analysis, using a long‐term temperature and precipitation dataset in the contiguous United States. Using the Huang–Hilbert transform, we identify the intrinsic frequencies of cross‐regional causality for precipitation and temperature, ranging from interannual to interdecadal time scales. In addition, we analyze the spectra of the physical climate variabilities, including El Niño‐Southern Oscillation and Pacific Decadal Oscillation. It is found that the intrinsic causal frequencies are positively associated with the physics of the oscillations in the global climate system. The proposed methodology provides fresh insights into the causal connectivity in Earth's hydroclimatic system and its underlying mechanism as regulated by the characteristic low‐frequency variability associated with various climatic dynamics.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4800\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4800","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Time variability and periodicities of cross‐regional hydroclimatic causation in the contiguous United States
Identifying and understanding various causal relations are fundamental to climate dynamics for improving the predictive capacity of Earth system modeling. In particular, causality in Earth systems has manifest temporal periodicities, like physical climate variabilities. To unravel the characteristic frequency of causality in climate dynamics, we develop a data‐analytic framework based on a combination of causality detection and Hilbert spectral analysis, using a long‐term temperature and precipitation dataset in the contiguous United States. Using the Huang–Hilbert transform, we identify the intrinsic frequencies of cross‐regional causality for precipitation and temperature, ranging from interannual to interdecadal time scales. In addition, we analyze the spectra of the physical climate variabilities, including El Niño‐Southern Oscillation and Pacific Decadal Oscillation. It is found that the intrinsic causal frequencies are positively associated with the physics of the oscillations in the global climate system. The proposed methodology provides fresh insights into the causal connectivity in Earth's hydroclimatic system and its underlying mechanism as regulated by the characteristic low‐frequency variability associated with various climatic dynamics.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.