Tahiyana Khan, Abbas I. Hussain, Timothy P. Casilli, Logan Frayser, Michelle Cho, Gabrielle Williams, David McFall, Patrick A. Forcelli
{"title":"对老年小鼠进行预防性溶酶治疗可降低癫痫发作的严重程度并提高癫痫状态的存活率","authors":"Tahiyana Khan, Abbas I. Hussain, Timothy P. Casilli, Logan Frayser, Michelle Cho, Gabrielle Williams, David McFall, Patrick A. Forcelli","doi":"10.1111/acel.14239","DOIUrl":null,"url":null,"abstract":"<p>Increased vulnerability to seizures in aging has been well documented both clinically and in various models of aging in epilepsy. Seizures can exacerbate cognitive decline that is already prominent in aging. Senescent cells are thought to contribute to cognitive impairment in aging and clearing senescent cells with senolytic drugs improves cognitive function in animal models. It remains unclear whether senescent cells render the aged brain vulnerable to seizures. Here, we demonstrate that prophylactic senolytic treatment with Dasatinib and Quercetin (D&Q) reduced both seizure severity and mortality in aged C57BL/6J mice. We subjected the D&Q and VEH-treated aged mice to spatial memory testing before and after an acute seizure insult, <i>Status Epilepticus [SE]</i>, which leads to epilepsy development. We found that senolytic therapy improved spatial memory before injury, however, spatial memory was not rescued after <i>SE</i>. Senescence-related proteins p16 and senescence-associated β-galactosidase were reduced in D&Q-treated aged mice. Our findings indicate that senescent cells increase seizure susceptibility in aging. Thus, prophylactically targeting senescent cells may prevent age-related seizure vulnerability.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14239","citationCount":"0","resultStr":"{\"title\":\"Prophylactic senolytic treatment in aged mice reduces seizure severity and improves survival from Status Epilepticus\",\"authors\":\"Tahiyana Khan, Abbas I. Hussain, Timothy P. Casilli, Logan Frayser, Michelle Cho, Gabrielle Williams, David McFall, Patrick A. Forcelli\",\"doi\":\"10.1111/acel.14239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increased vulnerability to seizures in aging has been well documented both clinically and in various models of aging in epilepsy. Seizures can exacerbate cognitive decline that is already prominent in aging. Senescent cells are thought to contribute to cognitive impairment in aging and clearing senescent cells with senolytic drugs improves cognitive function in animal models. It remains unclear whether senescent cells render the aged brain vulnerable to seizures. Here, we demonstrate that prophylactic senolytic treatment with Dasatinib and Quercetin (D&Q) reduced both seizure severity and mortality in aged C57BL/6J mice. We subjected the D&Q and VEH-treated aged mice to spatial memory testing before and after an acute seizure insult, <i>Status Epilepticus [SE]</i>, which leads to epilepsy development. We found that senolytic therapy improved spatial memory before injury, however, spatial memory was not rescued after <i>SE</i>. Senescence-related proteins p16 and senescence-associated β-galactosidase were reduced in D&Q-treated aged mice. Our findings indicate that senescent cells increase seizure susceptibility in aging. Thus, prophylactically targeting senescent cells may prevent age-related seizure vulnerability.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14239\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14239\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14239","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Prophylactic senolytic treatment in aged mice reduces seizure severity and improves survival from Status Epilepticus
Increased vulnerability to seizures in aging has been well documented both clinically and in various models of aging in epilepsy. Seizures can exacerbate cognitive decline that is already prominent in aging. Senescent cells are thought to contribute to cognitive impairment in aging and clearing senescent cells with senolytic drugs improves cognitive function in animal models. It remains unclear whether senescent cells render the aged brain vulnerable to seizures. Here, we demonstrate that prophylactic senolytic treatment with Dasatinib and Quercetin (D&Q) reduced both seizure severity and mortality in aged C57BL/6J mice. We subjected the D&Q and VEH-treated aged mice to spatial memory testing before and after an acute seizure insult, Status Epilepticus [SE], which leads to epilepsy development. We found that senolytic therapy improved spatial memory before injury, however, spatial memory was not rescued after SE. Senescence-related proteins p16 and senescence-associated β-galactosidase were reduced in D&Q-treated aged mice. Our findings indicate that senescent cells increase seizure susceptibility in aging. Thus, prophylactically targeting senescent cells may prevent age-related seizure vulnerability.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.