{"title":"尾部依赖系数的非参数估计:平衡偏差和方差","authors":"Matthieu Garcin, Maxime L. D. Nicolas","doi":"10.1007/s00362-024-01582-w","DOIUrl":null,"url":null,"abstract":"<p>A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"38 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimator of the tail dependence coefficient: balancing bias and variance\",\"authors\":\"Matthieu Garcin, Maxime L. D. Nicolas\",\"doi\":\"10.1007/s00362-024-01582-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01582-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01582-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric estimator of the tail dependence coefficient: balancing bias and variance
A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.