深度学习用于预测和分类片状平滑地图的动态行为

Vismaya V S, Bharath V Nair, Sishu Shankar Muni
{"title":"深度学习用于预测和分类片状平滑地图的动态行为","authors":"Vismaya V S, Bharath V Nair, Sishu Shankar Muni","doi":"arxiv-2406.17001","DOIUrl":null,"url":null,"abstract":"This paper explores the prediction of the dynamics of piecewise smooth maps\nusing various deep learning models. We have shown various novel ways of\npredicting the dynamics of piecewise smooth maps using deep learning models.\nMoreover, we have used machine learning models such as Decision Tree\nClassifier, Logistic Regression, K-Nearest Neighbor, Random Forest, and Support\nVector Machine for predicting the border collision bifurcation in the 1D normal\nform map and the 1D tent map. Further, we classified the regular and chaotic\nbehaviour of the 1D tent map and the 2D Lozi map using deep learning models\nlike Convolutional Neural Network (CNN), ResNet50, and ConvLSTM via cobweb\ndiagram and phase portraits. We also classified the chaotic and hyperchaotic\nbehaviour of the 3D piecewise smooth map using deep learning models such as the\nFeed Forward Neural Network (FNN), Long Short-Term Memory (LSTM), and Recurrent\nNeural Network (RNN). Finally, deep learning models such as Long Short-Term\nMemory (LSTM) and Recurrent Neural Network (RNN) are used for reconstructing\nthe two parametric charts of 2D border collision bifurcation normal form map.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Prediction and Classifying the Dynamical behaviour of Piecewise Smooth Maps\",\"authors\":\"Vismaya V S, Bharath V Nair, Sishu Shankar Muni\",\"doi\":\"arxiv-2406.17001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the prediction of the dynamics of piecewise smooth maps\\nusing various deep learning models. We have shown various novel ways of\\npredicting the dynamics of piecewise smooth maps using deep learning models.\\nMoreover, we have used machine learning models such as Decision Tree\\nClassifier, Logistic Regression, K-Nearest Neighbor, Random Forest, and Support\\nVector Machine for predicting the border collision bifurcation in the 1D normal\\nform map and the 1D tent map. Further, we classified the regular and chaotic\\nbehaviour of the 1D tent map and the 2D Lozi map using deep learning models\\nlike Convolutional Neural Network (CNN), ResNet50, and ConvLSTM via cobweb\\ndiagram and phase portraits. We also classified the chaotic and hyperchaotic\\nbehaviour of the 3D piecewise smooth map using deep learning models such as the\\nFeed Forward Neural Network (FNN), Long Short-Term Memory (LSTM), and Recurrent\\nNeural Network (RNN). Finally, deep learning models such as Long Short-Term\\nMemory (LSTM) and Recurrent Neural Network (RNN) are used for reconstructing\\nthe two parametric charts of 2D border collision bifurcation normal form map.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了利用各种深度学习模型预测片状平滑地图动态的方法。此外,我们还使用了决策树分类器、逻辑回归、K-近邻、随机森林和支持向量机等机器学习模型来预测一维正态图和一维帐篷图的边界碰撞分叉。此外,我们还利用卷积神经网络(CNN)、ResNet50 和 ConvLSTM 等深度学习模型,通过蛛网图和相位肖像对一维帐篷图和二维洛兹图的规则和混沌行为进行了分类。我们还利用前馈神经网络(FNN)、长短期记忆(LSTM)和循环神经网络(RNN)等深度学习模型对三维片状光滑图的混沌和超混沌行为进行了分类。最后,利用长短期记忆(LSTM)和循环神经网络(RNN)等深度学习模型重建二维边界碰撞分叉法线形式图的两个参数图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Prediction and Classifying the Dynamical behaviour of Piecewise Smooth Maps
This paper explores the prediction of the dynamics of piecewise smooth maps using various deep learning models. We have shown various novel ways of predicting the dynamics of piecewise smooth maps using deep learning models. Moreover, we have used machine learning models such as Decision Tree Classifier, Logistic Regression, K-Nearest Neighbor, Random Forest, and Support Vector Machine for predicting the border collision bifurcation in the 1D normal form map and the 1D tent map. Further, we classified the regular and chaotic behaviour of the 1D tent map and the 2D Lozi map using deep learning models like Convolutional Neural Network (CNN), ResNet50, and ConvLSTM via cobweb diagram and phase portraits. We also classified the chaotic and hyperchaotic behaviour of the 3D piecewise smooth map using deep learning models such as the Feed Forward Neural Network (FNN), Long Short-Term Memory (LSTM), and Recurrent Neural Network (RNN). Finally, deep learning models such as Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) are used for reconstructing the two parametric charts of 2D border collision bifurcation normal form map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1