应用于传感器网络定位的黎曼降维二阶方法

IF 3 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Scientific Computing Pub Date : 2024-06-17 DOI:10.1137/23m1567229
Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye
{"title":"应用于传感器网络定位的黎曼降维二阶方法","authors":"Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye","doi":"10.1137/23m1567229","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024. <br/> Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"5 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization\",\"authors\":\"Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye\",\"doi\":\"10.1137/23m1567229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024. <br/> Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1567229\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1567229","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 3 期,第 A2025-A2046 页,2024 年 6 月。 摘要本文提出了一种立方规则化黎曼优化方法(RDRSOM),该方法部分利用了二阶信息,达到了[math]的迭代复杂度。为了降低每次迭代的计算成本,我们进一步提出了 RDRSOM 的实用版本,它是著名的 Barzilai-Borwein 方法的扩展,可达到 [math] 的最坏情况迭代复杂度。此外,在更严格的条件下,RDRSOM 还能达到 [math] 的迭代复杂度。我们将我们的方法应用于解决无线传感器网络定位问题的一个非线性问题,该问题的可行集是一个黎曼流形,之前的文献从未考虑过这个问题。通过数值实验,我们验证了与最先进的黎曼优化方法和其他非线性求解器相比,我们的算法具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024.
Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
3.20%
发文量
209
审稿时长
1 months
期刊介绍: The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems. SISC papers are classified into three categories: 1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms. 2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist. 3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.
期刊最新文献
Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation Interpolating Parametrized Quantum Circuits Using Blackbox Queries Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes The Sparse-Grid-Based Adaptive Spectral Koopman Method Bound-Preserving Framework for Central-Upwind Schemes for General Hyperbolic Conservation Laws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1