Decheng Zhang, Jiaqing Xie, Xiaoyu Meng, Haoran Pang, Ruqian Sun, Haiyan Fan, Xiaohui Nan and Zhikang Zhou
{"title":"开发具有双高圆柱形微结构表面的压阻柔性传感器,实现车辆振动监测","authors":"Decheng Zhang, Jiaqing Xie, Xiaoyu Meng, Haoran Pang, Ruqian Sun, Haiyan Fan, Xiaohui Nan and Zhikang Zhou","doi":"10.1088/1361-6439/ad5564","DOIUrl":null,"url":null,"abstract":"This research proposed a vibration monitoring device based on a piezoresistive flexible sensor with microstructured surfaces to achieve a simple acquisition of vibration information in the driver’s cabin of automobiles. The shape, size and arrangement mode of microstructures on the piezoresistive flexible sensor performance were investigated by finite element simulation. The polydimethylsiloxane/hydroxylated multi walled carbon nanotubes (PDMS/MWCNTs-COOH) composite membranes were prepared by the combination of high-pressure spraying and spinning coating method. The electromechanical response curves of the piezoresistive flexible sensor composed of a double-layer PDMS/MWCNTs-COOH composite membranes based on a dual-height cylindrical microstructure were tested. A vibration monitoring device was developed to process the signals obtained by the fabricated piezoresistive flexible sensor, and the vibration response of the car cab under different driving conditions was investigated. The results indicated that the cylindrical microstructure with small size can improve the sensitivity of the fabricated piezoresistive flexible sensor. Compared with the single-height and dual-height cylindrical microstructure, the piezoresistive flexible sensor with dual-height cylindrical microstructure can expand the detection range, and improve the linearity and sensitivity. The piezoresistive flexible sensor exhibits excellent performance, with a sensitivity of 1.774 kPa−1 and a detection range is 0–0.5 kPa. The above advances can improve the authenticity of the collected data, and provide a basis for the processing and analysis of the vibration signal before improving the noise, vibration and harshness performance of the vehicle.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"55 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of piezoresistive flexible sensor with dual-height cylindrical microstructure surfaces to achieve vehicle vibration monitoring\",\"authors\":\"Decheng Zhang, Jiaqing Xie, Xiaoyu Meng, Haoran Pang, Ruqian Sun, Haiyan Fan, Xiaohui Nan and Zhikang Zhou\",\"doi\":\"10.1088/1361-6439/ad5564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposed a vibration monitoring device based on a piezoresistive flexible sensor with microstructured surfaces to achieve a simple acquisition of vibration information in the driver’s cabin of automobiles. The shape, size and arrangement mode of microstructures on the piezoresistive flexible sensor performance were investigated by finite element simulation. The polydimethylsiloxane/hydroxylated multi walled carbon nanotubes (PDMS/MWCNTs-COOH) composite membranes were prepared by the combination of high-pressure spraying and spinning coating method. The electromechanical response curves of the piezoresistive flexible sensor composed of a double-layer PDMS/MWCNTs-COOH composite membranes based on a dual-height cylindrical microstructure were tested. A vibration monitoring device was developed to process the signals obtained by the fabricated piezoresistive flexible sensor, and the vibration response of the car cab under different driving conditions was investigated. The results indicated that the cylindrical microstructure with small size can improve the sensitivity of the fabricated piezoresistive flexible sensor. Compared with the single-height and dual-height cylindrical microstructure, the piezoresistive flexible sensor with dual-height cylindrical microstructure can expand the detection range, and improve the linearity and sensitivity. The piezoresistive flexible sensor exhibits excellent performance, with a sensitivity of 1.774 kPa−1 and a detection range is 0–0.5 kPa. The above advances can improve the authenticity of the collected data, and provide a basis for the processing and analysis of the vibration signal before improving the noise, vibration and harshness performance of the vehicle.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad5564\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad5564","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of piezoresistive flexible sensor with dual-height cylindrical microstructure surfaces to achieve vehicle vibration monitoring
This research proposed a vibration monitoring device based on a piezoresistive flexible sensor with microstructured surfaces to achieve a simple acquisition of vibration information in the driver’s cabin of automobiles. The shape, size and arrangement mode of microstructures on the piezoresistive flexible sensor performance were investigated by finite element simulation. The polydimethylsiloxane/hydroxylated multi walled carbon nanotubes (PDMS/MWCNTs-COOH) composite membranes were prepared by the combination of high-pressure spraying and spinning coating method. The electromechanical response curves of the piezoresistive flexible sensor composed of a double-layer PDMS/MWCNTs-COOH composite membranes based on a dual-height cylindrical microstructure were tested. A vibration monitoring device was developed to process the signals obtained by the fabricated piezoresistive flexible sensor, and the vibration response of the car cab under different driving conditions was investigated. The results indicated that the cylindrical microstructure with small size can improve the sensitivity of the fabricated piezoresistive flexible sensor. Compared with the single-height and dual-height cylindrical microstructure, the piezoresistive flexible sensor with dual-height cylindrical microstructure can expand the detection range, and improve the linearity and sensitivity. The piezoresistive flexible sensor exhibits excellent performance, with a sensitivity of 1.774 kPa−1 and a detection range is 0–0.5 kPa. The above advances can improve the authenticity of the collected data, and provide a basis for the processing and analysis of the vibration signal before improving the noise, vibration and harshness performance of the vehicle.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.