ROSAT 巡天观测所揭示的恒星 X 射线活动和宜居性

Henggeng Han, Song Wang, Chuanjie Zheng, Xue Li, Kai Xiao and Jifeng Liu
{"title":"ROSAT 巡天观测所揭示的恒星 X 射线活动和宜居性","authors":"Henggeng Han, Song Wang, Chuanjie Zheng, Xue Li, Kai Xiao and Jifeng Liu","doi":"10.3847/1538-4365/ad4b17","DOIUrl":null,"url":null,"abstract":"Using the homogeneous X-ray catalog from ROSAT observations, we conducted a comprehensive investigation into stellar X-ray activity–rotation relations for both single and binary stars. Generally, the relation for single stars consists of two distinct regions: a weak decay region, indicating a continued dependence of the magnetic dynamo on stellar rotation rather than a saturation regime with constant activity, and a rapid decay region, where X-ray activity is strongly correlated with the Rossby number. Detailed analysis reveals more fine structures within the relation: in the extremely fast-rotating regime, a decrease in X-ray activity was observed with increasing rotation rate, referred to as supersaturation, while in the extremely slow-rotating region, the relation flattens, mainly due to the scattering of F stars. This scattering may result from intrinsic variability in stellar activities over one stellar cycle or the presence of different dynamo mechanisms. Binaries exhibit a similar relation to that of single stars while the limited sample size prevented the identification of fine structures in the relation for binaries. We calculated the mass-loss rates of planetary atmospheres triggered by X-ray emissions from host stars. Our findings indicate that for an Earthlike planet within the stellar habitable zone, it would easily lose its entire primordial H/He envelope (equating to about 1% of the planetary mass).","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stellar X-Ray Activity and Habitability Revealed by the ROSAT Sky Survey\",\"authors\":\"Henggeng Han, Song Wang, Chuanjie Zheng, Xue Li, Kai Xiao and Jifeng Liu\",\"doi\":\"10.3847/1538-4365/ad4b17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the homogeneous X-ray catalog from ROSAT observations, we conducted a comprehensive investigation into stellar X-ray activity–rotation relations for both single and binary stars. Generally, the relation for single stars consists of two distinct regions: a weak decay region, indicating a continued dependence of the magnetic dynamo on stellar rotation rather than a saturation regime with constant activity, and a rapid decay region, where X-ray activity is strongly correlated with the Rossby number. Detailed analysis reveals more fine structures within the relation: in the extremely fast-rotating regime, a decrease in X-ray activity was observed with increasing rotation rate, referred to as supersaturation, while in the extremely slow-rotating region, the relation flattens, mainly due to the scattering of F stars. This scattering may result from intrinsic variability in stellar activities over one stellar cycle or the presence of different dynamo mechanisms. Binaries exhibit a similar relation to that of single stars while the limited sample size prevented the identification of fine structures in the relation for binaries. We calculated the mass-loss rates of planetary atmospheres triggered by X-ray emissions from host stars. Our findings indicate that for an Earthlike planet within the stellar habitable zone, it would easily lose its entire primordial H/He envelope (equating to about 1% of the planetary mass).\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad4b17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad4b17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用来自 ROSAT 观测的同质 X 射线星表,我们对单星和双星的恒星 X 射线活动-旋转关系进行了全面研究。一般来说,单星的关系由两个不同的区域组成:一个是弱衰减区,表明磁动力持续依赖于恒星旋转,而不是恒定活动的饱和状态;另一个是快速衰减区,X射线活动与罗斯比数密切相关。详细分析揭示了这一关系中的更多细微结构:在极速旋转区,观测到 X 射线活动随着旋转速率的增加而减少,这被称为过饱和;而在极慢速旋转区,这一关系趋于平缓,这主要是由于 F 星的散射造成的。这种散射可能是由于恒星活动在一个恒星周期内的内在可变性或存在不同的动力机制造成的。双星表现出与单星类似的关系,但由于样本量有限,无法识别双星关系中的精细结构。我们计算了宿主星的 X 射线辐射引发的行星大气质量损失率。我们的研究结果表明,对于恒星宜居带内的类地行星来说,它很容易就会失去整个原始H/He包层(约等于行星质量的1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stellar X-Ray Activity and Habitability Revealed by the ROSAT Sky Survey
Using the homogeneous X-ray catalog from ROSAT observations, we conducted a comprehensive investigation into stellar X-ray activity–rotation relations for both single and binary stars. Generally, the relation for single stars consists of two distinct regions: a weak decay region, indicating a continued dependence of the magnetic dynamo on stellar rotation rather than a saturation regime with constant activity, and a rapid decay region, where X-ray activity is strongly correlated with the Rossby number. Detailed analysis reveals more fine structures within the relation: in the extremely fast-rotating regime, a decrease in X-ray activity was observed with increasing rotation rate, referred to as supersaturation, while in the extremely slow-rotating region, the relation flattens, mainly due to the scattering of F stars. This scattering may result from intrinsic variability in stellar activities over one stellar cycle or the presence of different dynamo mechanisms. Binaries exhibit a similar relation to that of single stars while the limited sample size prevented the identification of fine structures in the relation for binaries. We calculated the mass-loss rates of planetary atmospheres triggered by X-ray emissions from host stars. Our findings indicate that for an Earthlike planet within the stellar habitable zone, it would easily lose its entire primordial H/He envelope (equating to about 1% of the planetary mass).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1