Claudio Heinrich‐Mertsching, Thordis L. Thorarinsdottir, Peter Guttorp, Max Schneider
{"title":"用适当的评分规则验证点流程预测","authors":"Claudio Heinrich‐Mertsching, Thordis L. Thorarinsdottir, Peter Guttorp, Max Schneider","doi":"10.1111/sjos.12736","DOIUrl":null,"url":null,"abstract":"We introduce a class of proper scoring rules for evaluating spatial point process forecasts based on summary statistics. These scoring rules rely on Monte Carlo approximations of expectations and can therefore easily be evaluated for any point process model that can be simulated. In this regard, they are more flexible than the commonly used logarithmic score and other existing proper scores for point process predictions. The scoring rules allow for evaluating the calibration of a model to specific aspects of a point process, such as its spatial distribution or tendency toward clustering. Using simulations, we analyze the sensitivity of our scoring rules to different aspects of the forecasts and compare it to the logarithmic score. Applications to earthquake occurrences in northern California, United States and the spatial distribution of Pacific silver firs in Findley Lake Reserve in Washington highlight the usefulness of our scores for scientific model selection.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of point process predictions with proper scoring rules\",\"authors\":\"Claudio Heinrich‐Mertsching, Thordis L. Thorarinsdottir, Peter Guttorp, Max Schneider\",\"doi\":\"10.1111/sjos.12736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of proper scoring rules for evaluating spatial point process forecasts based on summary statistics. These scoring rules rely on Monte Carlo approximations of expectations and can therefore easily be evaluated for any point process model that can be simulated. In this regard, they are more flexible than the commonly used logarithmic score and other existing proper scores for point process predictions. The scoring rules allow for evaluating the calibration of a model to specific aspects of a point process, such as its spatial distribution or tendency toward clustering. Using simulations, we analyze the sensitivity of our scoring rules to different aspects of the forecasts and compare it to the logarithmic score. Applications to earthquake occurrences in northern California, United States and the spatial distribution of Pacific silver firs in Findley Lake Reserve in Washington highlight the usefulness of our scores for scientific model selection.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12736\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12736","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Validation of point process predictions with proper scoring rules
We introduce a class of proper scoring rules for evaluating spatial point process forecasts based on summary statistics. These scoring rules rely on Monte Carlo approximations of expectations and can therefore easily be evaluated for any point process model that can be simulated. In this regard, they are more flexible than the commonly used logarithmic score and other existing proper scores for point process predictions. The scoring rules allow for evaluating the calibration of a model to specific aspects of a point process, such as its spatial distribution or tendency toward clustering. Using simulations, we analyze the sensitivity of our scoring rules to different aspects of the forecasts and compare it to the logarithmic score. Applications to earthquake occurrences in northern California, United States and the spatial distribution of Pacific silver firs in Findley Lake Reserve in Washington highlight the usefulness of our scores for scientific model selection.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.