Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, Miroslav Stankovič
{"title":"(无法解决的循环分析","authors":"Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, Miroslav Stankovič","doi":"10.1007/s10703-024-00455-0","DOIUrl":null,"url":null,"abstract":"<p>Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler optimisation, is a challenging open problem. Whilst the problem is in general undecidable, the goal is settled for restricted classes of loops. For the class of <i>solvable</i> loops, introduced by Rodríguez-Carbonell and Kapur (in: Proceedings of the ISSAC, pp 266–273, 2004), one can automatically compute invariants from closed-form solutions of recurrence equations that model the loop behaviour. In this paper we establish a technique for invariant synthesis for loops that are not solvable, termed <i>unsolvable</i> loops. Our approach automatically partitions the program variables and identifies the so-called <i>defective</i> variables that characterise unsolvability. Herein we consider the following two applications. First, we present a novel technique that automatically synthesises polynomials from defective monomials, that admit closed-form solutions and thus lead to polynomial loop invariants. Second, given an unsolvable loop, we synthesise solvable loops with the following property: the invariant polynomials of the solvable loops are all invariants of the given unsolvable loop. Our implementation and experiments demonstrate both the feasibility and applicability of our approach to both deterministic and probabilistic programs.</p>","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Un)Solvable loop analysis\",\"authors\":\"Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, Miroslav Stankovič\",\"doi\":\"10.1007/s10703-024-00455-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler optimisation, is a challenging open problem. Whilst the problem is in general undecidable, the goal is settled for restricted classes of loops. For the class of <i>solvable</i> loops, introduced by Rodríguez-Carbonell and Kapur (in: Proceedings of the ISSAC, pp 266–273, 2004), one can automatically compute invariants from closed-form solutions of recurrence equations that model the loop behaviour. In this paper we establish a technique for invariant synthesis for loops that are not solvable, termed <i>unsolvable</i> loops. Our approach automatically partitions the program variables and identifies the so-called <i>defective</i> variables that characterise unsolvability. Herein we consider the following two applications. First, we present a novel technique that automatically synthesises polynomials from defective monomials, that admit closed-form solutions and thus lead to polynomial loop invariants. Second, given an unsolvable loop, we synthesise solvable loops with the following property: the invariant polynomials of the solvable loops are all invariants of the given unsolvable loop. Our implementation and experiments demonstrate both the feasibility and applicability of our approach to both deterministic and probabilistic programs.</p>\",\"PeriodicalId\":12430,\"journal\":{\"name\":\"Formal Methods in System Design\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formal Methods in System Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10703-024-00455-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10703-024-00455-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler optimisation, is a challenging open problem. Whilst the problem is in general undecidable, the goal is settled for restricted classes of loops. For the class of solvable loops, introduced by Rodríguez-Carbonell and Kapur (in: Proceedings of the ISSAC, pp 266–273, 2004), one can automatically compute invariants from closed-form solutions of recurrence equations that model the loop behaviour. In this paper we establish a technique for invariant synthesis for loops that are not solvable, termed unsolvable loops. Our approach automatically partitions the program variables and identifies the so-called defective variables that characterise unsolvability. Herein we consider the following two applications. First, we present a novel technique that automatically synthesises polynomials from defective monomials, that admit closed-form solutions and thus lead to polynomial loop invariants. Second, given an unsolvable loop, we synthesise solvable loops with the following property: the invariant polynomials of the solvable loops are all invariants of the given unsolvable loop. Our implementation and experiments demonstrate both the feasibility and applicability of our approach to both deterministic and probabilistic programs.
期刊介绍:
The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.