Sourav Das, Anuradha Priyadarshana, Stephen Grebby
{"title":"通过卫星 InSAR 时间序列数据的光谱分析监测尾矿坝溃坝风险","authors":"Sourav Das, Anuradha Priyadarshana, Stephen Grebby","doi":"10.1007/s00477-024-02713-3","DOIUrl":null,"url":null,"abstract":"<p>Slope failures possess destructive power that can cause significant damage to both life and infrastructure. Monitoring slopes prone to instabilities is therefore critical in mitigating the risk posed by their failure. The purpose of slope monitoring is to detect precursory signs of stability issues, such as changes in the rate of displacement with which a slope is deforming. This information can then be used to predict the timing or probability of an imminent failure in order to provide an early warning. Most approaches to predicting slope failures, such as the inverse velocity method, focus on predicting the timing of a potential failure. However, such approaches are deterministic and require some subjective analysis of displacement monitoring data to generate reliable timing predictions. In this study, a more objective, probabilistic-learning algorithm is proposed to detect and characterise the risk of a slope failure, based on spectral analysis of serially correlated displacement time-series data. The algorithm is applied to satellite-based interferometric synthetic radar (InSAR) displacement time-series data to retrospectively analyse the risk of the 2019 Brumadinho tailings dam collapse in Brazil. Two potential risk milestones are identified and signs of a definitive but emergent risk (27 February 2018-26 August 2018) and imminent risk of collapse of the tailings dam (27 June 2018-24 December 2018) are detected by the algorithm as the empirical points of inflection and maximum on a risk trajectory, respectively. Importantly, this precursory indication of risk of failure is detected as early as at least five months prior to the dam collapse on 25 January 2019. The results of this study demonstrate that the combination of spectral methods and second order statistical properties of InSAR displacement time-series data can reveal signs of a transition into an unstable deformation regime, and that this algorithm can provide sufficient early-warning that could help mitigate catastrophic slope failures.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the risk of a tailings dam collapse through spectral analysis of satellite InSAR time-series data\",\"authors\":\"Sourav Das, Anuradha Priyadarshana, Stephen Grebby\",\"doi\":\"10.1007/s00477-024-02713-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Slope failures possess destructive power that can cause significant damage to both life and infrastructure. Monitoring slopes prone to instabilities is therefore critical in mitigating the risk posed by their failure. The purpose of slope monitoring is to detect precursory signs of stability issues, such as changes in the rate of displacement with which a slope is deforming. This information can then be used to predict the timing or probability of an imminent failure in order to provide an early warning. Most approaches to predicting slope failures, such as the inverse velocity method, focus on predicting the timing of a potential failure. However, such approaches are deterministic and require some subjective analysis of displacement monitoring data to generate reliable timing predictions. In this study, a more objective, probabilistic-learning algorithm is proposed to detect and characterise the risk of a slope failure, based on spectral analysis of serially correlated displacement time-series data. The algorithm is applied to satellite-based interferometric synthetic radar (InSAR) displacement time-series data to retrospectively analyse the risk of the 2019 Brumadinho tailings dam collapse in Brazil. Two potential risk milestones are identified and signs of a definitive but emergent risk (27 February 2018-26 August 2018) and imminent risk of collapse of the tailings dam (27 June 2018-24 December 2018) are detected by the algorithm as the empirical points of inflection and maximum on a risk trajectory, respectively. Importantly, this precursory indication of risk of failure is detected as early as at least five months prior to the dam collapse on 25 January 2019. The results of this study demonstrate that the combination of spectral methods and second order statistical properties of InSAR displacement time-series data can reveal signs of a transition into an unstable deformation regime, and that this algorithm can provide sufficient early-warning that could help mitigate catastrophic slope failures.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02713-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02713-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Monitoring the risk of a tailings dam collapse through spectral analysis of satellite InSAR time-series data
Slope failures possess destructive power that can cause significant damage to both life and infrastructure. Monitoring slopes prone to instabilities is therefore critical in mitigating the risk posed by their failure. The purpose of slope monitoring is to detect precursory signs of stability issues, such as changes in the rate of displacement with which a slope is deforming. This information can then be used to predict the timing or probability of an imminent failure in order to provide an early warning. Most approaches to predicting slope failures, such as the inverse velocity method, focus on predicting the timing of a potential failure. However, such approaches are deterministic and require some subjective analysis of displacement monitoring data to generate reliable timing predictions. In this study, a more objective, probabilistic-learning algorithm is proposed to detect and characterise the risk of a slope failure, based on spectral analysis of serially correlated displacement time-series data. The algorithm is applied to satellite-based interferometric synthetic radar (InSAR) displacement time-series data to retrospectively analyse the risk of the 2019 Brumadinho tailings dam collapse in Brazil. Two potential risk milestones are identified and signs of a definitive but emergent risk (27 February 2018-26 August 2018) and imminent risk of collapse of the tailings dam (27 June 2018-24 December 2018) are detected by the algorithm as the empirical points of inflection and maximum on a risk trajectory, respectively. Importantly, this precursory indication of risk of failure is detected as early as at least five months prior to the dam collapse on 25 January 2019. The results of this study demonstrate that the combination of spectral methods and second order statistical properties of InSAR displacement time-series data can reveal signs of a transition into an unstable deformation regime, and that this algorithm can provide sufficient early-warning that could help mitigate catastrophic slope failures.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.