Akanae Chattrairat, Everson Kandare, Sontipee Aimmanee, Phuong Tran, Raj Das
{"title":"通过平滑粒子流体力学数值建模了解弹道颅脑损伤的撞击后生物力学原理","authors":"Akanae Chattrairat, Everson Kandare, Sontipee Aimmanee, Phuong Tran, Raj Das","doi":"10.1007/s40571-024-00783-2","DOIUrl":null,"url":null,"abstract":"<p>Virtual crime scene investigation using numerical models has the potential to assist in the forensic investigation of firearm-related fatalities, where ethical concerns and expensive resources limit the scope of physical experiments to comprehend the post-impact biomechanics comprehensively. The human cranial numerical model developed in this study incorporates three main components (skin, skull, and brain) with dynamic biomaterial properties. The virtual model provides valuable insights into the post-impact biomechanics of cranial ballistic injuries, particularly in high-speed events beyond conventional investigative capabilities, including the velocity of ejected blood backspatter, cavitation collapsing, and pressure waves. The validation of the numerical model, both quantitatively and qualitatively, demonstrates its ability to replicate similar bone fractures, entrance wound shapes, and backward skin ballooning observed in physical experiments of the human cranial geometry. The model also yields similar temporary cavity sizes, wound sizes, and blood backspatter time against the physical cranial model, aiding in bloodstain pattern analysis. Additionally, the numerical model enables exploration of ballistic factors that vary in each crime scene environment and influence cranial injuries, such as projectile type, velocity, impact location, and impact angle. These established injury patterns contribute to crime scene reconstruction by providing essential information on projectile trajectory, discharge distance, and firearm type, assisting in the resolution of court cases. In conclusion, the developed human cranial geometry in this study offers a reliable tool for investigating firearm-related cranial injuries, serving as a statistical reference in forensic science. Virtual crime scene investigations\nusing these models\nhave the potential to enhance the accuracy and efficiency of forensic analyses.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"9 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding post-impact biomechanics of ballistic cranial injury by smoothed particle hydrodynamics numerical modelling\",\"authors\":\"Akanae Chattrairat, Everson Kandare, Sontipee Aimmanee, Phuong Tran, Raj Das\",\"doi\":\"10.1007/s40571-024-00783-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Virtual crime scene investigation using numerical models has the potential to assist in the forensic investigation of firearm-related fatalities, where ethical concerns and expensive resources limit the scope of physical experiments to comprehend the post-impact biomechanics comprehensively. The human cranial numerical model developed in this study incorporates three main components (skin, skull, and brain) with dynamic biomaterial properties. The virtual model provides valuable insights into the post-impact biomechanics of cranial ballistic injuries, particularly in high-speed events beyond conventional investigative capabilities, including the velocity of ejected blood backspatter, cavitation collapsing, and pressure waves. The validation of the numerical model, both quantitatively and qualitatively, demonstrates its ability to replicate similar bone fractures, entrance wound shapes, and backward skin ballooning observed in physical experiments of the human cranial geometry. The model also yields similar temporary cavity sizes, wound sizes, and blood backspatter time against the physical cranial model, aiding in bloodstain pattern analysis. Additionally, the numerical model enables exploration of ballistic factors that vary in each crime scene environment and influence cranial injuries, such as projectile type, velocity, impact location, and impact angle. These established injury patterns contribute to crime scene reconstruction by providing essential information on projectile trajectory, discharge distance, and firearm type, assisting in the resolution of court cases. In conclusion, the developed human cranial geometry in this study offers a reliable tool for investigating firearm-related cranial injuries, serving as a statistical reference in forensic science. Virtual crime scene investigations\\nusing these models\\nhave the potential to enhance the accuracy and efficiency of forensic analyses.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00783-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00783-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Understanding post-impact biomechanics of ballistic cranial injury by smoothed particle hydrodynamics numerical modelling
Virtual crime scene investigation using numerical models has the potential to assist in the forensic investigation of firearm-related fatalities, where ethical concerns and expensive resources limit the scope of physical experiments to comprehend the post-impact biomechanics comprehensively. The human cranial numerical model developed in this study incorporates three main components (skin, skull, and brain) with dynamic biomaterial properties. The virtual model provides valuable insights into the post-impact biomechanics of cranial ballistic injuries, particularly in high-speed events beyond conventional investigative capabilities, including the velocity of ejected blood backspatter, cavitation collapsing, and pressure waves. The validation of the numerical model, both quantitatively and qualitatively, demonstrates its ability to replicate similar bone fractures, entrance wound shapes, and backward skin ballooning observed in physical experiments of the human cranial geometry. The model also yields similar temporary cavity sizes, wound sizes, and blood backspatter time against the physical cranial model, aiding in bloodstain pattern analysis. Additionally, the numerical model enables exploration of ballistic factors that vary in each crime scene environment and influence cranial injuries, such as projectile type, velocity, impact location, and impact angle. These established injury patterns contribute to crime scene reconstruction by providing essential information on projectile trajectory, discharge distance, and firearm type, assisting in the resolution of court cases. In conclusion, the developed human cranial geometry in this study offers a reliable tool for investigating firearm-related cranial injuries, serving as a statistical reference in forensic science. Virtual crime scene investigations
using these models
have the potential to enhance the accuracy and efficiency of forensic analyses.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.