Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin
{"title":"关于α-铍中自间隙扩散的分子动力学见解","authors":"Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin","doi":"10.1088/1361-651x/ad5a2a","DOIUrl":null,"url":null,"abstract":"Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics insights on the self-interstitial diffusion in α-Beryllium\",\"authors\":\"Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin\",\"doi\":\"10.1088/1361-651x/ad5a2a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad5a2a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad5a2a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
铍具有一些独特的性质,在许多特殊应用中发挥着关键作用。然而,铍(α-Be)为密堆积六方(HCP)晶体结构,具有很强的各向异性,限制了其应用。本文利用分子动力学模拟研究了 300-1100 K 温度下 α-Be 中自间隙原子(SIA)的扩散行为。结果表明,扩散机制不仅受基底面上 BO 和 BS 位点之间的 SIA 跃迁的支配,而且还受沿 c 轴的 C 和 O 位点之间的跃迁的支配,而这些跃迁与温度密切相关。SIA 的扩散行为可分为两个阶段,温度分别为 300-800 K 和 800-1100 K,其中 c 轴的扩散系数分量(Dc)最初高于基底面的扩散系数分量(Db),800 K 之后则逐渐接近于 Db,这与扩散机制一致。当温度从 300 K 上升到 1100 K 时,SIA 的总扩散系数(Dt)从 0.34 × 10-4 cm2 s-1 逐渐增加到 1.13 × 10-4 cm2 s-1。随着温度从 300 K 升至 1100 K,SIA 扩散的各向异性因子(η = Dc/Db)在 α-Be 中从 1.76 急剧下降至 1.01,而在α-Zr 中,随着温度从 500 K 升至 1100 K,η 从 0.21 增至 0.70。
Molecular dynamics insights on the self-interstitial diffusion in α-Beryllium
Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.