倾斜双正交集合、格罗内狄克随机分区和行列式检验

Svetlana Gavrilova, Leonid Petrov
{"title":"倾斜双正交集合、格罗内狄克随机分区和行列式检验","authors":"Svetlana Gavrilova, Leonid Petrov","doi":"10.1007/s00029-024-00945-3","DOIUrl":null,"url":null,"abstract":"<p>We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are <i>not</i> determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the <span>\\(4\\times 4\\)</span> problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size <span>\\(n\\ge 4\\)</span>, which appear new for <span>\\(n\\ge 5\\)</span>. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests\",\"authors\":\"Svetlana Gavrilova, Leonid Petrov\",\"doi\":\"10.1007/s00029-024-00945-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are <i>not</i> determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the <span>\\\\(4\\\\times 4\\\\)</span> problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size <span>\\\\(n\\\\ge 4\\\\)</span>, which appear new for <span>\\\\(n\\\\ge 5\\\\)</span>. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00945-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00945-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究基于对称格罗内狄克多项式的分区概率度量。格拉斯曼K理论中引入的这些舒尔多项式变形具有许多共同性质。我们的格罗thendieck 度量是奥孔科夫(Sel Math 7(1):57-81,2001)提出的分区上的舒尔度量的类似物。尽管舒尔和格罗内狄克度量的概率权重的行列式公式相似,但我们证明格罗内狄克度量不是行列式点过程。这个问题与代数几何中的主小赋值问题有关,我们采用了南森(Nanson)于 1897 年首次获得的行列式检验方法来解决 \(4\times 4\) 问题。我们还提出了一种对任意大小的矩阵(nge 4)进行类似南森的行列式检验的方法,这对于(nge 5)来说是新的。通过把格罗thendieck度量放到一个新的倾斜双向集合框架中,这个框架概括了鲍罗丁(Nucl Phys B 536:704-732,1998)提出的一类丰富的行列式过程,我们把格罗thendieck随机分区识别为舒尔过程的一个截面,舒尔过程是一个二维的行列式过程。这种识别通过弗雷德霍尔姆行列式之和来表达格罗内迪克测量的相关函数,而弗雷德霍尔姆行列式之和并不适合立即进行渐近分析。通过更直接的方法,我们可以得到格罗登第克随机分区的极限形状结果。极限形状曲线并不特别明确,因为它是舒尔过程极限形状曲面的横截面。这个曲面的梯度是通过一个三次方程的复根的参数来表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests

We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the \(4\times 4\) problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size \(n\ge 4\), which appear new for \(n\ge 5\). By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition Tomographic Fourier extension identities for submanifolds of $${\mathbb {R}}^n$$ The Morrison–Kawamata cone conjecture for singular symplectic varieties Colored vertex models and Iwahori Whittaker functions The module structure of a group action on a ring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1