Anastássia Mariáh Nunes de Oliveira Lima, Denise Crocce Romano Espinosa, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório
{"title":"NCA 型锂离子电池:金属回收分离和提纯技术综述","authors":"Anastássia Mariáh Nunes de Oliveira Lima, Denise Crocce Romano Espinosa, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório","doi":"10.1007/s40831-024-00859-6","DOIUrl":null,"url":null,"abstract":"<p>End-of-life lithium-ion batteries (LIBs) are waste from electric vehicles that contain valuable and critical metals such as cobalt and lithium in their composition. These metals are at risk of supply due to the increase in demand in the manufacture of technological products and the concentration of reserves in specific countries. When we talk about urban mining, the step of separation and purification is difficult and crucial for development of technology to recover metals because there are many problems when we have a mix and different concentration of these metals. Thus, this study aim is to clarify the techniques used in the recovery of LIBs residues for the NCA type. The NCA-type batteries, which contain, in addition to lithium (Li), cobalt (Co) and nickel (Ni), the element aluminium (Al) in their cathode structure. It is observed was carried out on the recovery of LIBs of all types, and a gap was observed regarding NCA type. Although many studies cover the recovery of metals in cathode structures from LIBs, it is not observed for batteries containing Al. Its observed that aluminium is a problem for the separation process because of its chemical characteristics. Based on this analysis, the recovery of metals presents in the NCA type batteries, the route proposed is that the first step should be the precipitation of aluminium, followed by solvent extraction of cobalt, and the last step is the precipitation of nickel, followed by lithium precipitation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NCA-Type Lithium-Ion Battery: A Review of Separation and Purification Technologies for Recycling Metals\",\"authors\":\"Anastássia Mariáh Nunes de Oliveira Lima, Denise Crocce Romano Espinosa, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório\",\"doi\":\"10.1007/s40831-024-00859-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>End-of-life lithium-ion batteries (LIBs) are waste from electric vehicles that contain valuable and critical metals such as cobalt and lithium in their composition. These metals are at risk of supply due to the increase in demand in the manufacture of technological products and the concentration of reserves in specific countries. When we talk about urban mining, the step of separation and purification is difficult and crucial for development of technology to recover metals because there are many problems when we have a mix and different concentration of these metals. Thus, this study aim is to clarify the techniques used in the recovery of LIBs residues for the NCA type. The NCA-type batteries, which contain, in addition to lithium (Li), cobalt (Co) and nickel (Ni), the element aluminium (Al) in their cathode structure. It is observed was carried out on the recovery of LIBs of all types, and a gap was observed regarding NCA type. Although many studies cover the recovery of metals in cathode structures from LIBs, it is not observed for batteries containing Al. Its observed that aluminium is a problem for the separation process because of its chemical characteristics. Based on this analysis, the recovery of metals presents in the NCA type batteries, the route proposed is that the first step should be the precipitation of aluminium, followed by solvent extraction of cobalt, and the last step is the precipitation of nickel, followed by lithium precipitation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00859-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00859-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
NCA-Type Lithium-Ion Battery: A Review of Separation and Purification Technologies for Recycling Metals
End-of-life lithium-ion batteries (LIBs) are waste from electric vehicles that contain valuable and critical metals such as cobalt and lithium in their composition. These metals are at risk of supply due to the increase in demand in the manufacture of technological products and the concentration of reserves in specific countries. When we talk about urban mining, the step of separation and purification is difficult and crucial for development of technology to recover metals because there are many problems when we have a mix and different concentration of these metals. Thus, this study aim is to clarify the techniques used in the recovery of LIBs residues for the NCA type. The NCA-type batteries, which contain, in addition to lithium (Li), cobalt (Co) and nickel (Ni), the element aluminium (Al) in their cathode structure. It is observed was carried out on the recovery of LIBs of all types, and a gap was observed regarding NCA type. Although many studies cover the recovery of metals in cathode structures from LIBs, it is not observed for batteries containing Al. Its observed that aluminium is a problem for the separation process because of its chemical characteristics. Based on this analysis, the recovery of metals presents in the NCA type batteries, the route proposed is that the first step should be the precipitation of aluminium, followed by solvent extraction of cobalt, and the last step is the precipitation of nickel, followed by lithium precipitation.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.