Daniel Cantero, Zohaib Sarwar, Abdollah Malekjafarian, Robert Corbally, Mehrisadat Makki Alamdari, Prasad Cheema, Jatin Aggarwal, Hae Young Noh, Jingxiao Liu
{"title":"从过往车辆响应检测道路桥梁损坏的数值基准,适用于四种数据驱动方法","authors":"Daniel Cantero, Zohaib Sarwar, Abdollah Malekjafarian, Robert Corbally, Mehrisadat Makki Alamdari, Prasad Cheema, Jatin Aggarwal, Hae Young Noh, Jingxiao Liu","doi":"10.1007/s43452-024-01001-9","DOIUrl":null,"url":null,"abstract":"<div><p>Drive-by bridge monitoring utilizes measured responses from passing vehicles to perform damage detection of bridge, a methodology challenged by multiple factors and operational conditions. Recently, data-driven methods have been used to improve the accuracy of drive-by monitoring. This thriving research field requires (but lacks) publicly available datasets to improve and validate its monitoring and damage detection capabilities. To foster data-driven drive-by bridge damage assessment methods, this document presents an openly available dataset consisting of numerically simulated vehicle responses crossing a range of bridge spans with various damage conditions. The dataset includes results for different monitoring scenarios, road profile conditions, vehicle models, vehicle mechanical properties and speeds. The intention is to provide a useful resource to the research community that serves as a reference set of results for testing and benchmarking new developments in the field. In addition, four recently published data-driven drive-by methods have been tested using the same dataset.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-01001-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical benchmark for road bridge damage detection from passing vehicles responses applied to four data-driven methods\",\"authors\":\"Daniel Cantero, Zohaib Sarwar, Abdollah Malekjafarian, Robert Corbally, Mehrisadat Makki Alamdari, Prasad Cheema, Jatin Aggarwal, Hae Young Noh, Jingxiao Liu\",\"doi\":\"10.1007/s43452-024-01001-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drive-by bridge monitoring utilizes measured responses from passing vehicles to perform damage detection of bridge, a methodology challenged by multiple factors and operational conditions. Recently, data-driven methods have been used to improve the accuracy of drive-by monitoring. This thriving research field requires (but lacks) publicly available datasets to improve and validate its monitoring and damage detection capabilities. To foster data-driven drive-by bridge damage assessment methods, this document presents an openly available dataset consisting of numerically simulated vehicle responses crossing a range of bridge spans with various damage conditions. The dataset includes results for different monitoring scenarios, road profile conditions, vehicle models, vehicle mechanical properties and speeds. The intention is to provide a useful resource to the research community that serves as a reference set of results for testing and benchmarking new developments in the field. In addition, four recently published data-driven drive-by methods have been tested using the same dataset.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43452-024-01001-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01001-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01001-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical benchmark for road bridge damage detection from passing vehicles responses applied to four data-driven methods
Drive-by bridge monitoring utilizes measured responses from passing vehicles to perform damage detection of bridge, a methodology challenged by multiple factors and operational conditions. Recently, data-driven methods have been used to improve the accuracy of drive-by monitoring. This thriving research field requires (but lacks) publicly available datasets to improve and validate its monitoring and damage detection capabilities. To foster data-driven drive-by bridge damage assessment methods, this document presents an openly available dataset consisting of numerically simulated vehicle responses crossing a range of bridge spans with various damage conditions. The dataset includes results for different monitoring scenarios, road profile conditions, vehicle models, vehicle mechanical properties and speeds. The intention is to provide a useful resource to the research community that serves as a reference set of results for testing and benchmarking new developments in the field. In addition, four recently published data-driven drive-by methods have been tested using the same dataset.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.