Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne
{"title":"生物炭的生产和改性为工程材料及其在环境可持续性方面的应用:综述","authors":"Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne","doi":"10.1007/s42773-024-00350-1","DOIUrl":null,"url":null,"abstract":"<p>Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"24 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review\",\"authors\":\"Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne\",\"doi\":\"10.1007/s42773-024-00350-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00350-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00350-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review
Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.