{"title":"用于生命表死亡人数建模和预测的加权组成功能数据分析","authors":"Han Lin Shang, Steven Haberman","doi":"10.1002/for.3171","DOIUrl":null,"url":null,"abstract":"<p>Age-specific life-table death counts observed over time are examples of densities. Nonnegativity and summability are constraints that sometimes require modifications of standard linear statistical methods. The centered log-ratio transformation presents a mapping from a constrained to a less constrained space. With a time series of densities, forecasts are more relevant to the recent data than the data from the distant past. We introduce a weighted compositional functional data analysis for modeling and forecasting life-table death counts. Our extension assigns higher weights to more recent data and provides a modeling scheme easily adapted for constraints. We illustrate our method using age-specific Swedish life-table death counts from 1751 to 2020. Compared with their unweighted counterparts, the weighted compositional data analytic method improves short-term point and interval forecast accuracies. The improved forecast accuracy could help actuaries improve the pricing of annuities and setting of reserves.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3171","citationCount":"0","resultStr":"{\"title\":\"Weighted compositional functional data analysis for modeling and forecasting life-table death counts\",\"authors\":\"Han Lin Shang, Steven Haberman\",\"doi\":\"10.1002/for.3171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Age-specific life-table death counts observed over time are examples of densities. Nonnegativity and summability are constraints that sometimes require modifications of standard linear statistical methods. The centered log-ratio transformation presents a mapping from a constrained to a less constrained space. With a time series of densities, forecasts are more relevant to the recent data than the data from the distant past. We introduce a weighted compositional functional data analysis for modeling and forecasting life-table death counts. Our extension assigns higher weights to more recent data and provides a modeling scheme easily adapted for constraints. We illustrate our method using age-specific Swedish life-table death counts from 1751 to 2020. Compared with their unweighted counterparts, the weighted compositional data analytic method improves short-term point and interval forecast accuracies. The improved forecast accuracy could help actuaries improve the pricing of annuities and setting of reserves.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3171\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3171\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3171","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Weighted compositional functional data analysis for modeling and forecasting life-table death counts
Age-specific life-table death counts observed over time are examples of densities. Nonnegativity and summability are constraints that sometimes require modifications of standard linear statistical methods. The centered log-ratio transformation presents a mapping from a constrained to a less constrained space. With a time series of densities, forecasts are more relevant to the recent data than the data from the distant past. We introduce a weighted compositional functional data analysis for modeling and forecasting life-table death counts. Our extension assigns higher weights to more recent data and provides a modeling scheme easily adapted for constraints. We illustrate our method using age-specific Swedish life-table death counts from 1751 to 2020. Compared with their unweighted counterparts, the weighted compositional data analytic method improves short-term point and interval forecast accuracies. The improved forecast accuracy could help actuaries improve the pricing of annuities and setting of reserves.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.